ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-01
    Description: Precipitation is a key source of freshwater; therefore, observing global patterns of precipitation and its intensity is important for science, society, and understanding our planet in a changing climate. In 2014, the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft. The GPM CO carries the most advanced precipitation sensors currently in space including a dual-frequency precipitation radar provided by JAXA for measuring the three-dimensional structures of precipitation and a well-calibrated, multifrequency passive microwave radiometer that provides wide-swath precipitation data. The GPM CO was designed to measure rain rates from 0.2 to 110.0 mm h−1 and to detect moderate to intense snow events. The GPM CO serves as a reference for unifying the data from a constellation of partner satellites to provide next-generation, merged precipitation estimates globally and with high spatial and temporal resolutions. Through improved measurements of rain and snow, precipitation data from GPM provides new information such as details on precipitation structure and intensity; observations of hurricanes and typhoons as they transition from the tropics to the midlatitudes; data to advance near-real-time hazard assessment for floods, landslides, and droughts; inputs to improve weather and climate models; and insights into agricultural productivity, famine, and public health. Since launch, GPM teams have calibrated satellite instruments, refined precipitation retrieval algorithms, expanded science investigations, and processed and disseminated precipitation data for a range of applications. The current status of GPM, its ongoing science, and its future plans are presented.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-13
    Description: The Integrated Multisatellite Retrievals for GPM (IMERG), a global high-resolution gridded precipitation dataset, will enable a wide range of applications, ranging from studies on precipitation characteristics to applications in hydrology to evaluation of weather and climate models. These applications focus on different spatial and temporal scales and thus average the precipitation estimates to coarser resolutions. Such a modification of scale will impact the reliability of IMERG. In this study, the performance of the Final Run of IMERG is evaluated against ground-based measurements as a function of increasing spatial resolution (from 0.1° to 2.5°) and accumulation periods (from 0.5 to 24 h) over a region in the southeastern United States. For ground reference, a product derived from the Multi-Radar/Multi-Sensor suite, a radar- and gauge-based operational precipitation dataset, is used. The TRMM Multisatellite Precipitation Analysis (TMPA) is also included as a benchmark. In general, both IMERG and TMPA improve when scaled up to larger areas and longer time periods, with better identification of rain occurrences and consistent improvements in systematic and random errors of rain rates. Between the two satellite estimates, IMERG is slightly better than TMPA most of the time. These results will inform users on the reliability of IMERG over the scales relevant to their studies.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-06
    Description: Integrated Multi‐Satellite Retrievals for Global Precipitation Measurement (IMERG) is the last generation precipitation data source for a wide array of research, operational, and societal applications. The Global Precipitation Measurement mission provides these global and high‐resolution precipitation estimates through advanced satellite‐based radar and radiometers. The degree of improvement of the new IMERG products needs to be investigated to further advance the algorithm's development and application. This study focuses on systematically and extensively evaluating the uncalibrated Version 3 Late Run IMERG product, which has both backward and forward morphing, and highlights the level of improvement in comparison to its predecessor Version 7 Tropical Rainfall Measurement Mission (TRMM)‐based Multi‐satellite Precipitation Analysis real‐time product. Retrievals from different passive microwave (PMW) and infrared (IR) sensors contributing to IMERG are evaluated over the conterminous United States using ground‐based sensor precipitation estimates derived from the Multi‐Radar Multi‐Sensor system as reference. An error decomposition scheme is implemented to separate the total error into three independent components, hit, miss‐rain, and false‐rain biases, to trace the degree of improvement of the new algorithm. IMERG exhibits definite improvement related to miss‐rain and false‐rain bias reduction and hit rate. The improvement relative to the TRMM ‐IR component is more substantial than relative to the PMW retrieval as a result of the new Kalman smoother and the PMW morphing reducing the use of IR relative to the TRMM‐based Multi‐satellite Precipitation Analysis. Findings of this study confirm the advances of the new generation of multisatellite precipitation relative to its predecessor and highlight areas requiring additional investigation.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-01
    Description: Researchers now have the benefit of an unprecedented suite of space- and ground-based sensors that provide multidimensional and multiparameter precipitation information. Motivated by NASA’s Global Precipitation Measurement (GPM) mission and ground validation objectives, the System for Integrating Multiplatform Data to Build the Atmospheric Column (SIMBA) has been developed as a unique multisensor precipitation data fusion tool to unify field observations recorded in a variety of formats and coordinate systems into a common reference frame. Through platform-specific modules, SIMBA processes data from native coordinates and resolutions only to the extent required to set them into a user-defined three-dimensional grid. At present, the system supports several ground-based scanning research radars, NWS NEXRAD radars, profiling Micro Rain Radars (MRRs), multiple disdrometers and rain gauges, soundings, the GPM Microwave Imager and Dual-Frequency Precipitation Radar on board the Core Observatory satellite, and Multi-Radar Multi-Sensor system quantitative precipitation estimates. SIMBA generates a new atmospheric column data product that contains a concomitant set of all available data from the supported platforms within the user-specified grid defining the column area in the versatile netCDF format. Key parameters for each data source are preserved as attributes. SIMBA provides a streamlined framework for initial research tasks, facilitating more efficient precipitation science. We demonstrate the utility of SIMBA for investigations, such as assessing spatial precipitation variability at subpixel scales and appraising satellite sensor algorithm representation of vertical precipitation structure for GPM Core Observatory overpass cases collected in the NASA Wallops Precipitation Science Research Facility and the GPM Olympic Mountain Experiment (OLYMPEX) ground validation field campaign in Washington State.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-01
    Description: Precipitation profiles from the Global Precipitation Measurement (GPM) Core Observatory Dual-Frequency Precipitation Radar (DPR; Ku and Ka bands) form part of the a priori database used in the Goddard profiling algorithm (GPROF) for retrievals of precipitation from passive microwave sensors, which are in turn used as high-quality precipitation estimates in gridded products. As GPROF performs precipitation retrievals as a function of surface classes, error characteristics may be dependent on surface types. In this study, the authors evaluate the rainfall estimates from DPR Ku as well as GPROF estimates from passive microwave sensors in the GPM constellation. The evaluation is conducted at the level of individual satellite pixels (5–15 km) against three dense networks of rain gauges, located over contrasting land surface types and rainfall regimes, with multiple gauges per satellite pixel and precise accumulation about overpass time to ensure a representative comparison. As expected, it was found that the active retrievals from DPR Ku generally performed better than the passive retrievals from GPROF. However, both retrievals struggle under coastal and semiarid environments. In particular, virga appears to be a serious challenge for both DPR Ku and GPROF. The authors detected the existence of lag due to the time it takes for satellite-observed precipitation to reach the ground, but the precise delay is difficult to quantify. It was also shown that subpixel variability is a contributor to the errors in GPROF. These results can pinpoint deficiencies in precipitation algorithms that may propagate into widely used gridded products.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-01
    Description: The comparison of satellite and high-quality, ground-based estimates of precipitation is an important means to assess the confidence in satellite-based algorithms and to provide a benchmark for their continued development and future improvement. To these ends, it is beneficial to identify sources of estimation uncertainty, thereby facilitating a precise understanding of the origins of the problem. This is especially true for new datasets such as the Integrated Multisatellite Retrievals for GPM (IMERG) product, which provides global precipitation gridded at a high resolution using measurements from different sources and techniques. Here, IMERG is evaluated against a dense network of gauges in the mid-Atlantic region of the United States. A novel approach is presented, leveraging ancillary variables in IMERG to attribute the errors to the individual instruments or techniques within the algorithm. As a whole, IMERG exhibits some misses and false alarms for rain detection, while its rain-rate estimates tend to overestimate drizzle and underestimate heavy rain with considerable random error. Tracing the errors to their sources, the most reliable IMERG estimates come from passive microwave satellites, which in turn exhibit a hierarchy of performance. The morphing technique has comparable proficiency with the less skillful satellites, but infrared estimations perform poorly. The approach here demonstrated that, underlying the overall reasonable performance of IMERG, different sources have different reliability, thus enabling both IMERG users and developers to better recognize the uncertainty in the estimate. Future validation efforts are urged to adopt such a categorization to bridge between gridded rainfall and instantaneous satellite estimates.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-01
    Description: The spatial variability of parameters of the raindrop size distribution and its derivatives is investigated through a field study where collocated Particle Size and Velocity (Parsivel2) and two-dimensional video disdrometers were operated at six sites at Wallops Flight Facility, Virginia, from December 2013 to March 2014. The three-parameter exponential function was employed to determine the spatial variability across the study domain where the maximum separation distance was 2.3 km. The nugget parameter of the exponential function was set to 0.99 and the correlation distance d0 and shape parameter s0 were retrieved by minimizing the root-mean-square error, after fitting it to the correlations of physical parameters. Fits were very good for almost all 15 physical parameters. The retrieved d0 and s0 were about 4.5 km and 1.1, respectively, for rain rate (RR) when all 12 disdrometers were reporting rainfall with a rain-rate threshold of 0.1 mm h−1 for 1-min averages. The d0 decreased noticeably when one or more disdrometers were required to report rain. The d0 was considerably different for a number of parameters (e.g., mass-weighted diameter) but was about the same for the other parameters (e.g., RR) when rainfall threshold was reset to 12 and 18 dBZ for Ka- and Ku-band reflectivity, respectively, following the expected Global Precipitation Measurement mission’s spaceborne radar minimum detectable signals. The reduction of the database through elimination of a site did not alter d0 as long as the fit was adequate. The correlations of 5-min rain accumulations were lower when disdrometer observations were simulated for a rain gauge at different bucket sizes.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-26
    Description: This article presents the data collected and analyzed using the University of Iowa’s X-band polarimetric (XPOL) radars that were part of the spring 2013 hydrology-oriented Iowa Flood Studies (IFloodS) field campaign, sponsored by NASA’s Global Precipitation Measurement (GPM) Ground Validation (GV) program. The four mobile radars have full scanning capabilities that provide quantitative estimation of the rainfall at high temporal and spatial resolutions over experimental watersheds. IFloodS was the first extensive test of the XPOL radars, and the XPOL radars demonstrated their field worthiness during this campaign with 46 days of nearly uninterrupted, remotely monitored, and controlled operations. This paper presents detailed postcampaign analyses of the high-resolution, research-quality data that the XPOL radars collected. The XPOL dual-polarimetric products and rainfall are compared with data from other instruments for selected diverse meteorological events at high spatiotemporal resolutions from unprecedentedly unique and vast data generated during IFloodS operations. The XPOL data exhibit a detailed, complex structure of precipitation viewed at multiple range resolutions (75 and 30 m). The inter-XPOL comparisons within an overlapping scanned domain demonstrate consistency across different XPOL units. The XPOLs employed a series of heterogeneous scans and obtained estimates of the meteorological echoes up to a range oversampling of 7.5 m. A finer-resolution (30 m) algorithm is described to correct the polarimetric estimates for attenuation at the X band and obtain agreement of attenuation-corrected products with disdrometers and NASA S-band polarimetric (NPOL) radar. The paper includes hardware characterization of Iowa XPOL radars conducted prior to the deployment in IFloodS following the GPM calibration protocol.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-01
    Description: A network of seven two-dimensional video disdrometers (2DVD), which were operated during the Midlatitude Continental Convective Clouds Experiment (MC3E) in northern Oklahoma, are employed to investigate the spatial variability of raindrop size distribution (DSD) within the footprint of the dual-frequency precipitation radar (DPR) on board the National Aeronautics and Space Administration’s Global Precipitation Measurement (GPM) mission core satellite. One-minute 2DVD DSD observations were interpolated uniformly to 13 points distributed within a nearly circular DPR footprint through an inverse distance weighting method. The presence of deep continental showers was a unique feature of the dataset resulting in a higher mean rain rate R with respect to previous studies. As a measure of spatial variability for the interpolated data, a three-parameter exponential function was applied to paired correlations of three parameters of normalized gamma DSD, R, reflectivity, and attenuation at Ka- and Ku-band frequencies of DPR (Z_Ka, Z_Ku, k_Ka, and k_Ku, respectively). The symmetry of the interpolated sites allowed quantifying the directional differences in correlations at the same distance. The correlation distances d0 of R, k_Ka, and k_Ku were approximately 10 km and were not sensitive to the choice of four rain thresholds used in this study. The d0 of Z_Ku, on the other hand, ranged from 29 to 20 km between different rain thresholds. The coefficient of variation (CV) remained less than 0.5 for most of the samples for a given physical parameter, but a CV of greater than 1.0 was also observed in noticeable samples, especially for the shape parameter and Z_Ku.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-01
    Description: The Olympic Mountains Experiment (OLYMPEX) took place during the 2015/16 fall–winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S.–Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching “atmospheric river” status, warm- and cold-frontal systems, and postfrontal convection.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...