ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-27
    Description: High-bypass turbofan engines with features required for commercial short haul powered lift transports were designed. Two engines were configured for each of the externally blown flap installations, under-the-wing and over-the-wing. Estimates of installed and uninstalled performance, noise, and weight were defined for each propulsion system.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-134738
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: Subsonic transport turbofan engine design and technology features which have promise of improving aircraft energy consumption are described. Task I addressed the selection and evaluation of features for the CF6 family of engines in current aircraft, and growth models of these aircraft. Task II involved cycle studies and the evaluation of technology features for advanced technology turbofans, consistent with initial service in 1985. Task III pursued the refined analysis of a specific design of an advanced technology turbofan engine selected as the result of Task II studies. In all of the above, the impact upon aircraft economics, as well as energy consumption, was evaluated. Task IV summarized recommendations for technology developments which would be necessary to achieve the improvements in energy consumption identified.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-135053 , R76AEG432
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.
    Keywords: PROPULSION SYSTEMS
    Type: NASA-CR-134660 , R74AEG327
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.
    Keywords: COMPOSITE MATERIALS
    Type: NASA-CR-134696 , R74AEG418
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: A study of unconventional engine cycle concepts, which may offer significantly lower energy consumption than conventional subsonic transport turbofans, is described herein. A number of unconventional engine concepts were identified and parametrically studied to determine their relative fuel-saving potential. Based on results from these studies, regenerative, geared, and variable-boost turbofans, and combinations thereof, were selected along with advanced turboprop cycles for further evaluation and refinement. Preliminary aerodynamic and mechanical designs of these unconventional engine configurations were conducted and mission performance was compared to a conventional, direct-drive turofan reference engine. Consideration is given to the unconventional concepts, and their state of readiness for application. Areas of needed technology advancement are identified.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-135136 , R76AEG597
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Parametric design and mission evaluations of advanced turbofan configurations were conducted for future transport aircraft application. Economics, environmental suitability and fuel efficiency were investigated and compared with goals set by NASA. Of the candidate engines which included mixed- and separate-flow, direct-drive and geared configurations, an advanced mixed-flow direct-drive configuration was selected for further design and evaluation. All goals were judged to have been met except the acoustic goal. Also conducted was a performance risk analysis and a preliminary aerodynamic design of the 10 stage 23:1 pressure ratio compressor used in the study engines.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-135444 , R78AEG510
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...