ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-04-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-15
    Description: The atmospheric response to the Kuroshio Extension (KE) variability during 1979–2012 is investigated using a KE index derived from sea surface height measurements and an eddy-resolving ocean general circulation model hindcast. When the index is positive, the KE is in the stable state, strengthened and shifted northward, with lower eddy kinetic energy, and the Kuroshio–Oyashio Extension (KOE) region is anomalously warm. The reverse holds when the index is negative. Regression analysis shows that there is a coherent atmospheric response to the decadal KE fluctuations between October and January. The KOE warming generates an upward surface heat flux that leads to local ascending motions and a northeastward shift of the zones of maximum baroclinicity, eddy heat and moisture fluxes, and the storm track. The atmospheric response consists of an equivalent barotropic large-scale signal, with a downstream high and a low over the Arctic. The heating and transient eddy anomalies excite stationary Rossby waves that propagate the signal poleward and eastward. There is a warming typically exceeding 0.6 K at 900 hPa over eastern Asia and western United States, which reduces the snow cover by 4%–6%. One month later, in November–February, a high appears over northwestern Europe, and the hemispheric teleconnection bears some similarity with the Arctic Oscillation. Composite analysis shows that the atmospheric response primarily occurs during the stable state of the KE, while no evidence of a significant large-scale atmospheric response is found in the unstable state. Arguments are given to explain this strong asymmetry.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-01
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-29
    Description: Search and rescue (SAR) modeling applications, mostly based on Lagrangian tracking particle algorithms, rely on the accuracy of met-ocean forecast models. Skill assessment methods are therefore required to evaluate the performance of ocean models in predicting particle trajectories. The Skill Score (SS), based on the Normalized Cumulative Lagrangian Separation (NCLS) distance between simulated and satellite-tracked drifter trajectories, is a commonly used metric. However, its applicability in coastal areas, where most of the SAR incidents occur, is difficult and sometimes unfeasible, because of the high variability that characterizes the coastal dynamics and the lack of drifter observations. In this study, we assess the performance of four models available in the Ibiza Channel (Western Mediterranean Sea) and evaluate the applicability of the SS in such coastal risk-prone regions seeking for a functional implementation in the context of SAR operations. We analyze the SS sensitivity to different forecast horizons and examine the best way to quantify the average model performance, to avoid biased conclusions. Our results show that the SS increases with forecast time in most cases. At short forecast times (i.e., 6 h), the SS exhibits a much higher variability due to the short trajectory lengths observed compared to the separation distance obtained at timescales not properly resolved by the models. However, longer forecast times lead to the overestimation of the SS due to the high variability of the surface currents. Findings also show that the averaged SS, as originally defined, can be misleading because of the imposition of a lower limit value of zero. To properly evaluate the averaged skill of the models, a revision of its definition, the so-called SS∗, is recommended. Furthermore, whereas drifters only provide assessment along their drifting paths, we show that trajectories derived from high-frequency radar (HFR) effectively provide information about the spatial distribution of the model performance inside the HFR coverage. HFR-derived trajectories could therefore be used for complementing drifter observations. The SS is, on average, more favorable to coarser-resolution models because of the double-penalty error, whereas higher-resolution models show both very low and very high performance during the experiments.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-12
    Description: This report provides recommendations to foster collaboration and cooperation between technologies and disciplines and for implementing truly integrated ocean observing systems. Based on an intensive literature review and a careful examination of different examples of integration in different fields, this work identifies the issues and barriers that must be addressed, and proposes a vision for a real implementation of this ocean integration ambition. This work is a contribution to the implementation of EOOS, a much-needed step forward in Europe, following the international guidance of GOOS.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Understanding and sustainably managing complex environments such as marine ecosystems benefits from an integrated approach to ensure that information about all relevant components and their interactions at multiple and nested spatiotemporal scales are considered. This information is based on a wide range of ocean observations using different systems and approaches. An integrated approach thus requires effective collaboration between areas of expertise in order to improve coordination at each step of the ocean observing value chain, from the design and deployment of multi-platform observations to their analysis and the delivery of products, sometimes through data assimilation in numerical models. Despite significant advances over the last two decades in more cooperation across the ocean observing activities, this integrated approach has not yet been fully realized. The ocean observing system still suffers from organizational silos due to independent and often disconnected initiatives, the strong and sometimes destructive competition across disciplines and among scientists, and the absence of a well-established overall governance framework. Here, we address the need for enhanced organizational integration among all the actors of ocean observing, focusing on the occidental systems. We advocate for a major evolution in the way we collaborate, calling for transformative scientific, cultural, behavioral, and management changes. This is timely because we now have the scientific and technical capabilities as well as urgent societal and political drivers. The ambition of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) and the various efforts to grow a sustainable ocean economy and effective ocean protection efforts all require a more integrated approach to ocean observing. After analyzing the barriers that currently prevent this full integration within the occidental systems, we suggest nine approaches for breaking down the silos and promoting better coordination and sharing. These recommendations are related to the organizational framework, the ocean science culture, the system of recognition and rewards, the data management system, the ocean governance structure, and the ocean observing drivers and funding. These reflections are intended to provide food for thought for further dialogue between all parties involved and trigger concrete actions to foster a real transformational change in ocean observing
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-16
    Description: This deliverable presents the Final Assessment of the observation and thematic networks as those represented in work package 3 of EuroSea, taking as a reference the information on Deliverable 3.2 Observing Network Initial Assessment. Following the same approach with D3.2 the original questionnaire was modified accordingly in order to depict the progress made on the same Network Attributes, Commitments and Benefits following the GOOS, OCG guidelines. The unforeseen COVID-19 pandemic had significant effects upon WP3 activities since the main mechanism foreseen to advance progress within the different networks was the organization of in person workshops. Moreover, adequate funds were allocated towards this in order to promote inclusivity and participation. Adapting to the new situation the first series of workshops had to be changed into online only events which despite the inherent difficulty, proved to have significant advantages as well. In particular they gave the opportunity for a significant number of people to join from all around the globe and participate in the events (for example the Sea Level WS). Another challenge proved to be the variability within some networks with sub-components or sub-groups having significantly different characteristics. In particular Eulerian platforms comprise a wide range of platforms - fixed moorings, surface buoys, cable bottom platforms - with some of them being part of mature and well-developed networks (OceanSITES, EMSO etc) while other are loose partners of on-going programs and projects (JERICO RI, coastal buoys). EuroSea activities had a significant positive impact on all the observing and thematic networks, actively promoting synergies and collaboration, with most of them successfully reaching Framework Processes Readiness Criteria Level 7 and above. Although progress at many different aspects must continue beyond EuroSea, it is important that the framework has been set. It is thus suggested that an annual evaluation/assessment process for each network/task team is adopted within EuroGOOS. By going through this exercise annually, each EuroGOOS Task Team (observing network) will be able to describe its current state, assess progress and most importantly to define next targets and priorities.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 2771-2796, doi:10.1175/JCLI-D-17-0061.1.
    Description: The Generalized Equilibrium Feedback Analysis (GEFA) is used to distinguish the influence of the Oyashio Extension (OE) and the Kuroshio Extension (KE) variability on the atmosphere from 1979 to 2014 from that of the main SST variability modes, using seasonal mean anomalies. Remote SST anomalies are associated with each single oceanic regressor, but the multivariate approach efficiently confines their SST footprints. In autumn [October–December (OND)], the OE meridional shifts are followed by a North Pacific Oscillation (NPO)-like signal. The OE influence is not investigated in winter [December–February (DJF)] because of multicollinearity, but a robust response with a strong signal over the Bering Sea is found in late winter/early spring [February–April (FMA)], a northeastward strengthening of the Aleutian low following a northward OE shift. A robust response to the KE variability is found in autumn, but not in winter and late winter when the KE SST footprint becomes increasingly small and noisy as regressors are added in GEFA. In autumn, a positive PDO is followed by a northward strengthening of the Aleutian low and a southward shift of the storm track in the central Pacific, reflecting the surface heat flux footprint in the central Pacific. In winter, the PDO shifts the maximum baroclinicity and storm track southward, the response strongly tilts westward with height in the North Pacific, and there is a negative NAO-like teleconnection. In late winter, the North Pacific NPO-like response to the PDO interferes negatively with the response to the OE and is only detected when the OE is represented in GEFA. A different PDO influence on the atmospheric circulation is found from 1958 to 1977.
    Description: This research has received funding from the European Union 7th Framework Program (FP7 2007-2013) under Grant Agreement 308299 (NACLIM) and from NSF Grants AGS CLD 1035423 and OCE PO 1242989.
    Keywords: Atmosphere-ocean interaction ; Boundary currents ; Pacific decadal oscillation ; Atmosphere-ocean interaction ; Empirical orthogonal functions ; Regression analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 2123-2144, doi:10.1175/JCLI-D-15-0511.1.
    Description: The atmospheric response to the Kuroshio Extension (KE) variability during 1979–2012 is investigated using a KE index derived from sea surface height measurements and an eddy-resolving ocean general circulation model hindcast. When the index is positive, the KE is in the stable state, strengthened and shifted northward, with lower eddy kinetic energy, and the Kuroshio–Oyashio Extension (KOE) region is anomalously warm. The reverse holds when the index is negative. Regression analysis shows that there is a coherent atmospheric response to the decadal KE fluctuations between October and January. The KOE warming generates an upward surface heat flux that leads to local ascending motions and a northeastward shift of the zones of maximum baroclinicity, eddy heat and moisture fluxes, and the storm track. The atmospheric response consists of an equivalent barotropic large-scale signal, with a downstream high and a low over the Arctic. The heating and transient eddy anomalies excite stationary Rossby waves that propagate the signal poleward and eastward. There is a warming typically exceeding 0.6 K at 900 hPa over eastern Asia and western United States, which reduces the snow cover by 4%–6%. One month later, in November–February, a high appears over northwestern Europe, and the hemispheric teleconnection bears some similarity with the Arctic Oscillation. Composite analysis shows that the atmospheric response primarily occurs during the stable state of the KE, while no evidence of a significant large-scale atmospheric response is found in the unstable state. Arguments are given to explain this strong asymmetry.
    Description: This research has received funding from the European Union 7th Framework Program (FP7 2007–2013) under Grant Agreement 308299 (NACLIM), from NSF Grant AGS CLD 1035423, and from Agence Nationale de la Recherche under the reference ANR 2011 Blanc SIMI 5-6 014 01.
    Description: 2016-09-23
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...