ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Ion-microprobe U-Pb zircon ages of detrital zircons from a metasediment of the Loch Maree Group, Lewisian Complex, NW Scotland show striking similarities to those in coeval Palaeoproterozoic belts of Laurentia and Fennoscandia, and confirm previous suggestions of a connection between them. Late-Archaean zircons (3.06–2.48 Gyr old) represent derivation from Lewisian quartzofeldspathic gneisses, andlor a contemporaneous terrane. Palaeoproterozoic zircons (2.2–2.0 Gyrold) place a maximum age constraint upon deposition. An appropriate quartzofeldspathic source for these latter zircons is not presently known, either in the Lewisian or the wider Laurentia-Fennoscandia region, although its requirement would be consistent with a development of the Loch Maree Group, together with juvenile magmatic arc rocks, at an active margin which was probably removed by lateral tectonics. Comparisons are made with contemporaneous supracrustal sequences throughout the Laurentia–Fennoscandia region, which exhibit marked similarities in source region age characteristics, lithologies, and inferred depositional environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 205 (1965), S. 350-352 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] RECENT geochronological work on the Lewisian of the Scottish mainland from Assynt to Durness15 has firmly established the ages of four major events?the Scourian metamorphism6 (about 2,600 + m.y.), the Inverian metamorphism2,3 (about 2,200 m.y.), the intrusion of a series of basic dykes (2,200 m.y.) ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 299 (1982), S. 540-542 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A fundamental property of normal intraplate lithosphere is that it exhibits no significant internal lateral distortion over time periods of the order of tens or hundreds of Myr as testified, for example, by the exactness of fit of the passive continental margins across the Atlantic1. This lack of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0016-7835
    Keywords: Key words Western Turkey ; Southern MenderesMassif ; Augen gneisses ; Deformed grains ; Microstructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  A detailed fabric and microstructural analysis of the granitic mylonites was carried out on the southern side of Bes,parmak Mountain north of Selimiye (Milas). The mylonitic augen gneisses have a blastomylonitic texture characterized by large retort-shape porphyroclasts or augen of feldspars, around which a more ductile, medium to fine-grained matrix of muscovite, biotite, quartz and feldspar is deflected. Feldspars behave in both plastic and brittle fashion, because size reduction occurs through grain boundary migration and/or subgrain rotation, and also through fracturing. Typical “core-and-mantle” structure, characterized by a large feldspar core surrounded by a mantle of fine recrystallized grains, is very characteristic. The majority of plagioclase twins obey the albite-twin law; however, the association with pericline-law twinning suggests that many of the twins are mechanical. Evidence of strain, such as deformation twins, bent or curved twins, undulatory extinction, deformation bands and kink bands occur characteristically in plagioclase. Myrmekite is ubiquitous at K-feldspar grain boundaries, most notably on the long sides of inequant grains parallel to the S-foliation direction, which invariably face the maximum finite shortening direction. Deformation of quartz in mylonitic augen gneisses commonly results in the development of core-and-mantle structure and “type-4” quartz ribbons of elongated, preferably oriented, newly recrystallized quartz aggregates suggesting a primary dynamic recrystallization. Undulatory extinction, deformation bands and lamellae are the strain-related features associated with quartz porphyroclasts. Micas, especially biotite, undergo internal deformation by bend gliding and kinking. Most of the micas are completely attenuated and aligned such that their (001) planes are subparallel or parallel to the margins of quartz ribbons and define the foliation in the rock. These microstructures of feldspars, quartz and mica in the mylonitic augen gneisses in this part of the southern Menderes Massif are broadly consistent with fabric development under upper-greenschist- to lower-amphibolite-facies conditions, rather than almandine–amphibolite facies, as was previously believed. This supports the previous contention of the authors that the protoliths of augen gneisses are younger granitoids and do not represent an exposed Precambrian Pan-African basement in the Menderes Massif.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-06-21
    Description: The Lewisian Gneiss Complex of northwestern Scotland consists of Archaean gneisses, variably reworked during the Proterozoic. It can be divided into three districts - a central granulite-facies district between districts of amphibolite-facies gneiss to the north and south. Recent work has interpreted these districts in terms of separate terranes, initiating a controversy that has implications for how Precambrian rocks are understood worldwide. The northern district of the Lewisian Gneiss Complex (the Rhiconich terrane) is separated from the central district (the Assynt terrane) by a broad ductile shear zone known as the Laxford Shear Zone. This paper reviews the geology of the Laxford Shear Zone, clarifying field relationships and discussing other evidence, to consider whether or not it does indeed represent a terrane boundary. A detailed review of field, geochemical and geochronological evidence supports the recognition of the separate Assynt and Rhiconich terranes. Mafic dykes (the Scourie Dyke Swarm) and granitoids, of Palaeoproterozoic age, occur on both sides of the Laxford Shear Zone and thus the terranes were most probably juxtaposed during the late Archaean to early Palaeoproterozoic Inverian event. Subsequently, the less-competent, more-hydrous amphibolite-facies gneisses of the Rhiconich terrane were affected by later Palaeoproterozoic (Laxfordian) deformation and partial melting, to a greater extent than the more-competent granulite-facies gneisses of the Assynt terrane.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 335: 51-79.
    Publication Date: 2010-06-21
    Description: The Lewisian Complex is an Archaean/Proterozoic craton fragment found in NW Scotland and throughout the Outer Hebrides. The 1907 memoir recognized, simply from field relationships and petrographic observation, key features of Lewisian evolution. The bulk of the Lewisian is an old, deformed complex consisting mainly of acid igneous rocks, with some basics, ultrabasics and metasediments. In the Central District of the mainland these are pyroxene bearing (now recognized as granulite facies). The Lewisian Complex was intruded by a suite of basic and ultrabasic dykes which show variable states of later deformation, the intensity of strain being correlated with the development of hornblende schist in the dykes and amphibolite facies assemblages in the country rocks. In the Northern and Southern Districts, this deformation is pervasive and the dykes become concordant hornblende schist sheets. The new foliation with transposed dykes and metasediment sheets is then folded around NW-SE axes. Today there is no single agreed model for the evolution of the complex but an outline is as follows. In the pre-dyke (Scourian) history, subduction led to melting of oceanic crust which provided vast volumes of tonalite-trondhjemite-granodiorite in the period 3100-2700 Ma. Ages show geographic variations but it is not proven whether that implies large displacements between pieces of crust or whether it represents intrusions into other intrusions. The subcontinental lithospheric mantle dates from c. 3000 Ma. K, U and other large ion lithophile elements are depleted in the Central District of the mainland; this is due to depletion in the downgoing oceanic slab which in turn is a result of dehydration prior to melting. Other areas are not depleted in such elements, so various tectonic settings were involved. Remnants of metabasic material in the Lewisian may be relics of oceanic crust. Granulite facies metamorphism with, in places, P〉10 kb and T〉1000 {degrees}C occurred a considerable time after intrusion so is not necessarily linked to igneous events. This Badcallian' episode affected mainly the Central District and a part of the southern Outer Hebrides; other areas show only amphibolite facies. Zircon dating indicates two high-grade events at 2500 and 2700 Ma. During the Inverian' episode a series of wide amphibolite-facies shear zones affected the granulite-facies Scourian gneiss prior to the intrusion of the Scourie dykes. The Scourie dykes were intruded from 2400-2000 Ma and are largely quartz tholeiites derived from enriched subcontinental lithospheric mantle; there are some picrites which yield the oldest ages but are also seen to crosscut basic dykes. The dykes trend NW-SE and are steep where not affected by later deformation except where they intrude along, and are controlled by, Inverian fabrics. Post-dyke (Laxfordian) history involves the development of calc-alkaline igneous rocks in the Outer Hebrides and mainland (c. 1900 Ma). Volcanics associated with sediments younger than 2000 Ma comprise an accretionary complex formed in a subduction setting; they are now intercalated between slabs of Archaean basement indicating that the complex was involved in collision with continental crust. Huge strains transposing dykes and country rocks affected almost all of the Outer Hebrides and the mainland except for the Central District. The NW-SE trending lineation indicates the collision direction; the metasediments on the mainland and the South Harris Igneous Complex may mark a folded suture between two continents. Metamorphism was amphibolite facies almost everywhere; in South Harris it was granulite facies at c. 1880 Ma. At 1750-1675 Ma, a distinct event, called late Laxfordian but much younger than earlier Laxfordian metamorphism and with a distinct tectonic setting, caused folding of the previous structures along NW-SE axes, migmatization and renewed amphibolite facies metamorphism.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
  • 9
    Publication Date: 2016-01-07
    Description: Two Palaeoproterozoic events have particularly interested Earth scientists. These are the global Lomagundi–Jatuli Event, the greatest magnitude positive carbonate carbon isotope excursion in Earth history, and the Shunga Event, the world’s largest organic carbon burial event. Analysis of newly acquired high-resolution C–O isotope data and U–Pb zircon geochronology refine understanding of carbon isotope characteristics and timing of deposition of the Palaeoproterozoic Loch Maree Group of NW Scotland. Petrographic examination reveals a basal unconformity between the Loch Maree Group and Archaean basement, permitting a stratigraphy and younging direction to be assigned. Detrital zircon ages from immediately above the unconformity are dated at c . 2.3 Ga. 13 C carbonate data on two temporally discrete carbonate packages range from c . +15 to 2 in the older unit and c . 2 to –5 in the younger carbonate unit. Current age constraints indicate that the Loch Maree Group is too young to be fully coeval with the Lomagundi–Jatuli Event but is within the age range of the Shunga Event. This revives consideration of a straightforward mass-balance process involving burial of organic carbon as an explanation for at least some of the C-cycle perturbations of Palaeoproterozoic time. Supplementary Material: Sample descriptions from the Loch Maree Group, geochemical data, sample preparation and geochronology data are available at http://www.geolsoc.org.uk/SUP18865 .
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-09-20
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...