ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-08-13
    Description: The East China Sea is characterized by wide continental shelf receiving a huge input of terrigenous matter from both large rivers and mountainous rivers, which makes it an ideal natural laboratory for studying sediment source-to-sink transport processes. This paper presents mineralogical and geochemical data of the clays and bulk sediments from the rivers entering the East China Sea, aiming to investigate the general driving mechanism of silicate weathering and sediment transport processes in East Asian continental margin. Two types of river systems, tectonically-stable continental rivers and tectonically-active mountainous rivers, co-exist in East Asia. As the direct weathering products, clays can better reflect the silicate weathering regimes within the two river systems. Provenance rock types are not the dominant factor causing silicate weathering intensity difference existed in the East Asian rivers. The silicate weathering intensity of tectonically-stable river basins is primarily driven by monsoon climate, and the sediment transfer is relatively slow because of natural trapping process and increasing damming effect. The geochemistry of these river-borne sediments can thus indicate paleo-weathering intensities in East Asian continent. In contrast, silicate weathering intensity in tectonically-active mountainous rivers is greatly limited by strong physical erosion despite the high temperature and highest monsoon rainfall. The factors controlling silicate weathering in tectonically-active catchments are complex and thus, it should be prudent to use river sediment records to decipher paleoclimate change. These two different silicate weathering regimes and sediment transport processes are manifestations of the landscape evolution and overall dominate the sedimentation in Asian continental margin. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-15
    Description: The Taiwan Warm Current (TWC) has an overwhelming influence on the heat, salt and nutrients balance on one of the broadest shelf in the world, the East China Sea shelf. In winter, the TWC flows in an unusual upwind direction and reaches the Changjiang (Yangtze River) Estuary, but its origin and pathway are intensely debated. Here, combined evidences from current measurement, hydrographic and stable isotopic data all suggest that the wintertime TWC intrusion off the Changjiang Estuary mainly originates from the Kuroshio subsurface water northeast of Taiwan, rather than from the Taiwan Strait warm water. The Kuroshio-branched water northeast of Taiwan can intrude into the inner shelf near the Zhe-Min Coast via bottom layer, manifesting by a pronounced boundary at 50 m isobath around 28°N, and thereby feeds the TWC intrusion into the Changjiang Estuary. The intrusion complicates the hydrological process in the estuary and shelf sea, and its impact on marine environment deserves more research attentions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-07-01
    Print ISSN: 1000-9426
    Electronic ISSN: 1993-0364
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-24
    Description: Although rare earth element (REE) has been widely applied for provenance study and paleoenvironmental reconstruction, its mobility and fractionation during earth surface processes from weathering to sediment deposition remain more clarification. We investigated the REE fractionations during chemical weathering and river sediment transport based on the systematic observations from a granodiorite-weathering profile and Mulanxi River sediments in southeast China. Two chemical phases (leachates and residues) were separated by 1 N HCl leaching and the leachates account for 20∼70% of the bulk REE concentration. REEs in the weathering profile have been mobilized and fractionated to different extents during chemical weathering and pedogenesis. Remarkable cerium anomalies (Ce/Ce*=0.1∼10.6) occur during weathering as a result of co-precipitation with Mn (hydro)oxides in the profile, while poor or no Ce anomalies in the river sediments were observed. This contrasting feature sheds new light on the indication of Ce anomaly for redox change. The hydraulic sorting-induced mineral redistribution can further homogenize the weathering and pedogenic alterations and thus weaken the REE fractionations in river sediments. The mineral assemblage is the ultimate control on REE composition, and the Mn–Fe (hydro)oxides and secondary phosphate minerals are the main hosts of acid-leachable REEs, while the clay minerals could be important reservoirs for residual REEs. We thus suggest that the widely-used REE proxies such as (LREE/HREE) UCC ratio in the residues is reliable for the indication of sediment provenance, while the ratio in the leachates can indicate the total weathering process to some extent. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract Chemical composition of river sediments and dissolved load are classically used to infer controls on continental weathering, and therefore exert an important role on the understanding of the global carbon and biogeochemical cycles. To date, most studied river basins are strongly impacted by dam constructions, however, the effects of dams on sediment chemical compositions are little known. The Three Gorges Dam (TGD) is one of the largest dams in the world and was constructed in 2003 in the Changjiang basin. In order to investigate the impact of this dam on downstream sediment chemistry, temporal variation of sediment weathering intensity is reported here based on analyzed and compiled data from between 1997 and 2018. Downstream sediments collected before 2003 are characterized by weak weathering intensity, in agreement with the overwhelming flux and fast transfer of sediments derived from the mountainous upper watershed. After the TGD construction, strong mid‐lower riverbed erosion changed the roles of the mid‐lower reaches from important sinks to major sources of sediments delivered to the East China Sea. This resulted in a progressive change of the sediment chemistry because the eroded mid‐lower riverbed sediments were more deeply weathered, as confirmed by 150‐year‐old sediment cored in the lower mainstream, and by mass‐balance calculations. This more intensive weathering may be explained by warmer climate and longer water‐rock interaction time in the mid‐lower basin. Thus, this study suggests the need to quantify potential bias in weathering intensity and controls caused by damming activity in large river systems.
    Print ISSN: 2169-9003
    Electronic ISSN: 2169-9011
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...