ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4692–4711, doi:10.1002/2014GC005563.
    Description: A multifaceted study of the slow spreading Mid-Atlantic Ridge (MAR) at 16.5°N provides new insights into detachment faulting and its evolution through time. The survey included regional multibeam bathymetry mapping, high-resolution mapping using AUV Sentry, seafloor imaging using the TowCam system, and an extensive rock-dredging program. At different times, detachment faulting was active along ∼50 km of the western flank of the study area, and may have dominated spreading on that flank for the last 5 Ma. Detachment morphologies vary and include a classic corrugated massif, noncorrugated massifs, and back-tilted ridges marking detachment breakaways. High-resolution Sentry data reveal a new detachment morphology; a low-angle, irregular surface in the regional bathymetry is shown to be a finely corrugated detachment surface (corrugation wavelength of only tens of meters and relief of just a few meters). Multiscale corrugations are observed 2–3 km from the detachment breakaway suggesting that they formed in the brittle layer, perhaps by anastomosing faults. The thin wedge of hanging wall lavas that covers a low-angle (6°) detachment footwall near its termination are intensely faulted and fissured; this deformation may be enhanced by the low angle of the emerging footwall. Active detachment faulting currently is limited to the western side of the rift valley. Nonetheless, detachment fault morphologies also are present over a large portion of the eastern flank on crust 〉2 Ma, indicating that within the last 5 Ma parts of the ridge axis have experienced periods of two-sided detachment faulting.
    Description: This work was supported by the National Science Foundation grant OCE-1155650.
    Description: 2015-06-05
    Keywords: Oceanic detachment faults ; AUV Sentry ; Mid-Atlantic Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 3993–4010, doi:10.1002/2016GC006514.
    Description: The 16°30'N area of the Mid-Atlantic Ridge represents an area of present-day detachment faulting. Here we present shipboard bathymetric, magnetic and gravity data acquired up to 65 km from the ridge axis that reveal a varied tectonic history of this region. Magnetic data are used to calculate spreading rates and examine spreading rate variability along and across the axis. Bathymetric and gravity data are used to infer the crustal structure. A central magnetic anomaly 40% narrower than expected is observed along much of the study area. Misalignment between modern-day spreading center and magnetic anomalies indicates tectonic reorganization of the axis within the past 780 ka. Observed magnetic anomalies show a pattern of anomalous skewness consistent with rotation of magnetic vectors probably associated with detachment faulting. Relatively thin crust north of a small (∼7 km) nontransform offset coincides with a weakly magmatic spreading axis. In contrast, to the south a robust axial volcanic ridge is underlain by thicker crust. Variations in crustal structure perpendicular to the axis occur over tens of kilometers, indicating processes which occur over timescales of 1–2 Ma.
    Description: National Science Foundation Grant Number: OCE-1155650
    Description: 2017-04-22
    Keywords: Mid-Ocean Ridge ; Oceanic detachment fault ; Crustal accretion ; Gravity anomalies ; Magnetic anomalies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 491 (2018): 255, doi:10.1016/j.epsl.2018.03.053.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 3414–3435, doi:10.1002/2015GC005947.
    Description: Overflow of Northern Component Water, the precursor of North Atlantic Deep Water, appears to have varied during Neogene times. It has been suggested that this variation is moderated by transient behavior of the Icelandic mantle plume, which has influenced North Atlantic bathymetry through time. Thus pathways and intensities of bottom currents that control deposition of contourite drifts could be affected by mantle processes. Here, we present regional seismic reflection profiles that cross sedimentary accumulations (Björn, Gardar, Eirik, and Hatton Drifts). Prominent reflections were mapped and calibrated using a combination of boreholes and legacy seismic profiles. Interpreted seismic profiles were used to reconstruct solid sedimentation rates. Björn Drift began to accumulate in late Miocene times. Its average sedimentation rate decreased at ∼2.5 Ma and increased again at ∼0.75 Ma. In contrast, Eirik Drift started to accumulate in early Miocene times. Its average sedimentation rate increased at ∼5.5 Ma and decreased at ∼2.2 Ma. In both cases, there is a good correlation between sedimentation rates, inferred Northern Component Water overflow, and the variation of Icelandic plume temperature independently obtained from the geometry of diachronous V-shaped ridges. Between 5.5 and 2.5 Ma, the plume cooled, which probably caused subsidence of the Greenland-Iceland-Scotland Ridge, allowing drift accumulation to increase. When the plume became hotter at 2.5 Ma, drift accumulation rate fell. We infer that deep-water current strength is modulated by fluctuating dynamic support of the Greenland-Scotland Ridge. Our results highlight the potential link between mantle convective processes and ocean circulation.
    Description: Natural Environment Research Council Grant Number: NE/G007632/1; The University of Cambridge Girdler Fund; BP Exploration
    Description: 2016-04-15
    Keywords: Contourite ; Drift ; Iceland ; Plume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 19 (2018): 3115-3127, doi:10.1029/2018GC007536.
    Description: While processes associated with initiation and maintenance of oceanic detachment faults are becoming better constrained, much less is known about the tectonic and magmatic conditions that lead to fault abandonment. Here we present results from near‐bottom investigations using the submersible Alvin and autonomous underwater vehicle Sentry at a recently extinct detachment fault near 13°48′N, Mid‐Atlantic Ridge, that allow documentation of the final stages of fault activity and magmatism. Seafloor imagery, sampling, and near‐bottom magnetic data show that the detachment footwall is intersected by an ~850 m‐wide volcanic outcrop including pillow lavas. Saturation pressures in these vesicular basalts, based on dissolved H2O and CO2, are less than their collection pressures, which could be explained by eruption at a shallower level than their present depth. Sub‐bottom profiles reveal that sediment thickness, a loose proxy for seafloor age, is ~2 m greater on top of the volcanic terrain than on the footwall adjacent to the hanging‐wall cutoff. This difference could be explained by current‐driven erosion in the axial valley or by continued slip after volcanic emplacement, on either a newly formed or pre‐existing fault. Since current speeds near the footwall are unlikely to be sufficient to cause significant erosion, we favor the hypothesis that detachment slip continued after the episode of magmatism, consistent with growing evidence that oceanic detachments can continue to slip despite hosting magmatic intrusions.
    Description: National Science Foundation (NSF) Grant Numbers: OCE‐1259218, OCE‐1260578, OCE‐1736547
    Description: 2019-03-14
    Keywords: Mid‐ocean ridge ; Oceanic detachment fault ; Near‐bottom geophysics ; Volatile geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wu, J., Parnell‐Turner, R., Fornari, D., Kurras, G., Berrios‐Rivera, N., Barreyre, T., & McDermott, J. Extent and volume of lava flows erupted at 9°50’N, East Pacific Rise in 2005–2006 from autonomous underwater vehicle surveys. Geochemistry Geophysics Geosystems, 23, (2022): e2021GC010213, https://doi.org/10.1029/2021gc010213.
    Description: Seafloor volcanic eruptions are difficult to directly observe due to lengthy eruption cycles and the remote location of mid-ocean ridges. Volcanic eruptions in 2005–2006 at 9°50′N on the East Pacific Rise have been well documented, but the lava volume and flow extent remain uncertain because of the limited near-bottom bathymetric data. We present near-bottom data collected during 19 autonomous underwater vehicle (AUV) Sentry dives at 9°50′N in 2018, 2019, and 2021. The resulting 1 m-resolution bathymetric grid and 20 cm-resolution sidescan sonar images cover 115 km2, and span the entire area of the 2005–2006 eruptions, including an 8 km2 pre-eruption survey collected with AUV ABE in 2001. Pre- and post-eruption surveys, combined with sidescan sonar images and seismo-acoustic impulsive events recorded during the eruptions, are used to quantify the lava flow extent and to estimate changes in seafloor depth caused by lava emplacement. During the 2005–2006 eruptions, lava flowed up to ∼3 km away from the axial summit trough, covering an area of ∼20.8 km2; ∼50% larger than previously thought. Where pre- and post-eruption surveys overlap, individual flow lobes can be resolved, confirming that lava thickness varies from ∼1 to 10 m, and increases with distance from eruptive fissures. The resulting lava volume estimate indicates that ∼57% of the melt extracted from the axial melt lens probably remained in the subsurface as dikes. These observations provide insights into recharge cycles in the subsurface magma system, and are a baseline for studying future eruptions at the 9°50′N area.
    Description: This project is supported by National Science Foundation grants OCE-1834797, OCE-1949485, OCE-194893, OCE-1949938, and by Scripps Institution of Oceanography's David DeLaCour Endowment Fund.
    Keywords: Submarine volcanism ; Mid-ocean ridges ; Autonomous underwater vehicle ; Eruption cycles ; Seafloor mapping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 7080–7088, doi:10.1002/2014GL061555.
    Description: Long-lived detachment faults play an important role in the construction of new oceanic crust at slow-spreading mid-oceanic ridges. Although the corrugated surfaces of exposed low-angle faults demonstrate past slip, it is difficult to determine whether a given fault is currently active. If inactive, it is unclear when slip ceased. This judgment is crucial for tectonic reconstructions where detachment faults are present, and for models of plate spreading. We quantify variation in sediment thickness over two corrugated surfaces near 16.5°N at the Mid-Atlantic Ridge using near-bottom Compressed High Intensity Radar Pulse (CHIRP) data. We show that the distribution of sediment and tectonic features at one detachment fault is consistent with slip occurring today. In contrast, another corrugated surface 20 km to the south shows a sediment distribution suggesting that slip ceased ~150,000 years ago. Data presented here provide new evidence for active detachment faulting, and suggest along-axis variations in fault activity occur over tens of kilometers.
    Description: This work was supported by the National Science Foundation grant number OCE-1155650.
    Description: 2015-04-23
    Keywords: Mid-ocean ridge ; Detachment faulting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geology 45 (2017): 923-926, doi:10.1130/G39232.1.
    Description: In extensional geologic systems such as mid-ocean ridges, deformation is typically accommodated by slip on normal faults, where material is pulled apart under tension and stress is released by rupture during earthquakes and magmatic accretion. However, at slowly spreading mid-ocean ridges where the tectonic plates move apart at rates 〈80 km m.y.–1, these normal faults may roll over to form long-lived, low-angled detachments that exhume mantle rocks and form corrugated domes on the seabed. Here we present the results of a local micro-earthquake study over an active detachment at 13°20′N on the Mid-Atlantic Ridge to show that these features can give rise to reverse-faulting earthquakes in response to plate bending. During a 6 month survey period, we observed a remarkably high rate of seismic activity, with 〉244,000 events detected along 25 km of the ridge axis, to depths of ∼10 km below seafloor. Surprisingly, the majority of these were reverse-faulting events. Restricted to depths of 3–7 km below seafloor, these reverse events delineate a band of intense compressional seismicity located adjacent to a zone of deeper extensional events. This deformation pattern is consistent with flexural models of plate bending during lithospheric accretion. Our results indicate that the lower portion of the detachment footwall experiences compressive stresses and deforms internally as the fault rolls over to low angles before emerging at the seafloor. These compressive stresses trigger reverse faulting even though the detachment itself is an extensional system.
    Description: This research was funded by Natural Environment Research Council (NERC) grants NE/J02029X/1, NE/ J021741/1, and NE/J022551/1, and by U.S. National Science Foundation grant OCE-1458084.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was accepted for publication in Earth and Planetary Science Letters 479 (2017): 60-70, doi: 10.1016/j.epsl.2017.09.020.
    Description: Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived faults called oceanic detachments. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths. The commonly-observed result is a domed, subhorizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains debated. Here we present a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13°20'N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger teleseismically-observed earthquakes. The unique coincidence of these two datasets provides a comprehensive definition of rupture on the fault, from the uppermost mantle to the seabed. Our results demonstrate that although slip on the deep, steeply-dipping portion of detachment faults is accommodated by failure in numerous microearthquakes, the shallow, gently-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. This result brings into question the current paradigm that the shallow sections of oceanic detachment faults are dominated by low-friction mineralogies and therefore slip aseismically, but is consistent with observations from continental detachment faults. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated at shallow depths.
    Description: TJC thanks the Royal Commission for the Exhibition of 1851 for financial support through a Research Fellowship; RPT was supported by NSF grant OCE-1458084.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 122 (2017): 8675–8708, doi:10.1002/2017JB014225.
    Description: In the North Atlantic Ocean, the geometry of diachronous V-shaped features that straddle the Reykjanes Ridge is often attributed to thermal pulses which advect away from the center of the Iceland plume. Recently, two alternative hypotheses have been proposed: rift propagation and buoyant mantle upwelling. Here we evaluate these different proposals using basin-wide geophysical and geochemical observations. The centerpiece of our analysis is a pair of seismic reflection profiles oriented parallel to flow lines that span the North Atlantic Ocean. V-shaped ridges and troughs are mapped on both Neogene and Paleogene oceanic crust, enabling a detailed chronology of activity to be established for the last 50 million years. Estimates of the cumulative horizontal displacement across normal faults help to discriminate between brittle and magmatic modes of plate separation, suggesting that crustal architecture is sensitive to the changing planform of the plume. Water-loaded residual depth measurements are used to estimate crustal thickness and to infer mantle potential temperature which varies by ±25°C on timescales of 3–8 Ma. This variation is consistent with the range of temperatures inferred from geochemical modeling of dredged basaltic rocks along the ridge axis itself, from changes in Neogene deep-water circulation, and from the regional record of episodic Cenozoic magmatism. We conclude that radial propagation of transient thermal anomalies within an asthenospheric channel that is 150 ± 50 km thick best accounts for the available geophysical and geochemical observations.
    Description: NERC Grant Number: NE/G007632/1; Girdler Fund, University of Cambridge; BP Exploration
    Description: 2018-05-14
    Keywords: Iceland plume ; V-shaped ridges ; Mantle convection ; Oceanic crust
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...