ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-09-06
    Description: Evolutionary relationships among the eight major lineages of Mollusca have remained unresolved despite their diversity and importance. Previous investigations of molluscan phylogeny, based primarily on nuclear ribosomal gene sequences or morphological data, have been unsuccessful at elucidating these relationships. Recently, phylogenomic studies using dozens to hundreds of genes have greatly improved our understanding of deep animal relationships. However, limited genomic resources spanning molluscan diversity has prevented use of a phylogenomic approach. Here we use transcriptome and genome data from all major lineages (except Monoplacophora) and recover a well-supported topology for Mollusca. Our results strongly support the Aculifera hypothesis placing Polyplacophora (chitons) in a clade with a monophyletic Aplacophora (worm-like molluscs). Additionally, within Conchifera, a sister-taxon relationship between Gastropoda and Bivalvia is supported. This grouping has received little consideration and contains most (〉95%) molluscan species. Thus we propose the node-based name Pleistomollusca. In light of these results, we examined the evolution of morphological characters and found support for advanced cephalization and shells as possibly having multiple origins within Mollusca.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024475/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024475/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kocot, Kevin M -- Cannon, Johanna T -- Todt, Christiane -- Citarella, Mathew R -- Kohn, Andrea B -- Meyer, Achim -- Santos, Scott R -- Schander, Christoffer -- Moroz, Leonid L -- Lieb, Bernhard -- Halanych, Kenneth M -- 1R01GM097502/GM/NIGMS NIH HHS/ -- 1R01NS06076/NS/NINDS NIH HHS/ -- R01 GM097502/GM/NIGMS NIH HHS/ -- R01 NS039103/NS/NINDS NIH HHS/ -- R21 DA030118/DA/NIDA NIH HHS/ -- R21 RR025699/RR/NCRR NIH HHS/ -- R21DA030118/DA/NIDA NIH HHS/ -- England -- Nature. 2011 Sep 4;477(7365):452-6. doi: 10.1038/nature10382.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849, USA. kmkocot@auburn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21892190" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bivalvia/anatomy & histology/classification/genetics ; Expressed Sequence Tags ; Gastropoda/anatomy & histology/classification/genetics ; Gene Expression Profiling ; Genes ; Genome/*genetics ; Genomics ; Models, Biological ; Mollusca/anatomy & histology/*classification/*genetics ; *Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-06
    Description: The position of Xenacoelomorpha in the tree of life remains a major unresolved question in the study of deep animal relationships. Xenacoelomorpha, comprising Acoela, Nemertodermatida, and Xenoturbella, are bilaterally symmetrical marine worms that lack several features common to most other bilaterians, for example an anus, nephridia, and a circulatory system. Two conflicting hypotheses are under debate: Xenacoelomorpha is the sister group to all remaining Bilateria (= Nephrozoa, namely protostomes and deuterostomes) or is a clade inside Deuterostomia. Thus, determining the phylogenetic position of this clade is pivotal for understanding the early evolution of bilaterian features, or as a case of drastic secondary loss of complexity. Here we show robust phylogenomic support for Xenacoelomorpha as the sister taxon of Nephrozoa. Our phylogenetic analyses, based on 11 novel xenacoelomorph transcriptomes and using different models of evolution under maximum likelihood and Bayesian inference analyses, strongly corroborate this result. Rigorous testing of 25 experimental data sets designed to exclude data partitions and taxa potentially prone to reconstruction biases indicates that long-branch attraction, saturation, and missing data do not influence these results. The sister group relationship between Nephrozoa and Xenacoelomorpha supported by our phylogenomic analyses implies that the last common ancestor of bilaterians was probably a benthic, ciliated acoelomate worm with a single opening into an epithelial gut, and that excretory organs, coelomic cavities, and nerve cords evolved after xenacoelomorphs separated from the stem lineage of Nephrozoa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cannon, Johanna Taylor -- Vellutini, Bruno Cossermelli -- Smith, Julian 3rd -- Ronquist, Fredrik -- Jondelius, Ulf -- Hejnol, Andreas -- England -- Nature. 2016 Feb 4;530(7588):89-93. doi: 10.1038/nature16520.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Naturhistoriska Riksmuseet, PO Box 50007, SE-104 05 Stockholm, Sweden. ; Sars International Centre for Marine Molecular Biology, University of Bergen, Thormohlensgate 55, 5008 Bergen, Norway. ; Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, South Carolina 29733, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26842059" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Structures/anatomy & histology ; Animals ; Aquatic Organisms/*classification/genetics ; Bayes Theorem ; Genes ; Likelihood Functions ; Male ; Models, Biological ; *Phylogeny ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1978-12-01
    Description: Small neurons of the substantia gelatinosa Rolandi and the subjacent dorsal horn of the spinal cord have been thought to exert a direct modulatory effect only on neurons located within a distance of a few spinal segemnts. By using the technique of retorograde transport of horseradish peroxidase, however, it has been found that in the rat a significant number of these cells, particularly those of the subjacent dorsal horn, ascend many spinal segments to the lateral cervical nucleus and to the lower brainstem. These data provide an anatomic basis for a role of substantia gelatinosa Rolandi and subjacent dorsal horn cells in madulating or contributing to sensory information transmission not only in nearby segments but in far distant structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giesler, G J Jr -- Cannon, J T -- Urca, G -- Liebeskind, J C -- New York, N.Y. -- Science. 1978 Dec 1;202(4371):984-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/715454" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways/cytology ; Animals ; Brain Stem/*cytology ; Male ; Rats ; Spinal Cord/*cytology/physiology ; Substantia Gelatinosa/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-05-09
    Description: Inescapable foot shock in rats caused profound analgesia that was antagonized by naloxone or dexamethasone when shock was delivered intermittently for 30 minutes, but not when it was delivered continuously for 3 minutes. Thus, depending only on its temporal characteristics, foot-shock stress appears to activate opioid or nonopioid analgesia mechanisms. Certain forms of stress may act as natural inputs to an endogenous opiate analgesia system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewis, J W -- Cannon, J T -- Liebeskind, J C -- New York, N.Y. -- Science. 1980 May 9;208(4444):623-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7367889" target="_blank"〉PubMed〈/a〉
    Keywords: *Analgesia ; Animals ; Dexamethasone/*pharmacology ; Electroshock ; Endorphins/*physiology ; Male ; Naloxone/pharmacology ; Pain/*physiopathology ; Pituitary Gland/physiology ; Rats ; Stress, Physiological/*physiopathology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1984-12-14
    Description: Portions of the brain stem seem normally to inhibit pain. In man and laboratory animals these brain areas and pathways from them to spinal sensory circuits can be activated by focal stimulation. Endogenous opioids appear to be implicated although separate nonopioid mechanisms are also evident. Stress seems to be a natural stimulus triggering pain suppression. Properties of electric footshock have been shown to determine the opioid or nonopioid basis of stress-induced analgesia. Two different opioid systems can be activated by different footshock paradigms. This dissection of stress analgesia has begun to integrate divergent findings concerning pain inhibition and also to account for some of the variance that has obscured the reliable measurement of the effects of stress on tumor growth and immune function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Terman, G W -- Shavit, Y -- Lewis, J W -- Cannon, J T -- Liebeskind, J C -- MH 15795/MH/NIMH NIH HHS/ -- NS-07628/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1984 Dec 14;226(4680):1270-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6505691" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Adrenalectomy ; Anesthesia ; Animals ; Brain Stem/physiology ; Conditioning (Psychology) ; Electroshock ; Endorphins/physiology ; Histamine/physiology ; Humans ; Hypophysectomy ; Immunosuppression ; Naltrexone/pharmacology ; Neoplasms/physiopathology ; Nociceptors/physiology ; Pain/*physiopathology ; Pentobarbital/pharmacology ; Rats ; Stress, Physiological/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...