ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-03-17
    Description: Antibodies to conserved epitopes on the human immunodeficiency virus (HIV) surface protein gp140 can protect against infection in non-human primates, and some infected individuals show high titres of broadly neutralizing immunoglobulin (Ig)G antibodies in their serum. However, little is known about the specificity and activity of these antibodies. To characterize the memory antibody responses to HIV, we cloned 502 antibodies from HIV envelope-binding memory B cells from six HIV-infected patients with broadly neutralizing antibodies and low to intermediate viral loads. We show that in these patients, the B-cell memory response to gp140 is composed of up to 50 independent clones expressing high affinity neutralizing antibodies to the gp120 variable loops, the CD4-binding site, the co-receptor-binding site, and to a new neutralizing epitope that is in the same region of gp120 as the CD4-binding site. Thus, the IgG memory B-cell compartment in the selected group of patients with broad serum neutralizing activity to HIV is comprised of multiple clonal responses with neutralizing activity directed against several epitopes on gp120.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheid, Johannes F -- Mouquet, Hugo -- Feldhahn, Niklas -- Seaman, Michael S -- Velinzon, Klara -- Pietzsch, John -- Ott, Rene G -- Anthony, Robert M -- Zebroski, Henry -- Hurley, Arlene -- Phogat, Adhuna -- Chakrabarti, Bimal -- Li, Yuxing -- Connors, Mark -- Pereyra, Florencia -- Walker, Bruce D -- Wardemann, Hedda -- Ho, David -- Wyatt, Richard T -- Mascola, John R -- Ravetch, Jeffrey V -- Nussenzweig, Michel C -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2009 Apr 2;458(7238):636-40. doi: 10.1038/nature07930. Epub 2009 Mar 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19287373" target="_blank"〉PubMed〈/a〉
    Keywords: Antibody Affinity ; Antigens, CD4/metabolism ; B-Lymphocytes/*immunology ; Binding Sites ; Enzyme-Linked Immunosorbent Assay ; Epitope Mapping ; Epitopes, B-Lymphocyte/chemistry/immunology ; HIV Antibodies/*analysis/*immunology/isolation & purification ; HIV Envelope Protein gp120/chemistry/immunology/metabolism ; HIV Envelope Protein gp41/chemistry/immunology ; HIV Infections/*immunology ; Humans ; Immunologic Memory/*immunology ; Neutralization Tests ; Receptors, HIV/metabolism ; Viral Load ; env Gene Products, Human Immunodeficiency Virus/chemistry/*immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-19
    Description: Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheid, Johannes F -- Mouquet, Hugo -- Ueberheide, Beatrix -- Diskin, Ron -- Klein, Florian -- Oliveira, Thiago Y K -- Pietzsch, John -- Fenyo, David -- Abadir, Alexander -- Velinzon, Klara -- Hurley, Arlene -- Myung, Sunnie -- Boulad, Farid -- Poignard, Pascal -- Burton, Dennis R -- Pereyra, Florencia -- Ho, David D -- Walker, Bruce D -- Seaman, Michael S -- Bjorkman, Pamela J -- Chait, Brian T -- Nussenzweig, Michel C -- P01 AI081677/AI/NIAID NIH HHS/ -- P30 AI060354/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1633-7. doi: 10.1126/science.1207227. Epub 2011 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764753" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/*immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/immunology/*metabolism ; Binding Sites ; Binding Sites, Antibody ; Cloning, Molecular ; Consensus Sequence ; Crystallography, X-Ray ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry ; Immunoglobulin Heavy Chains/chemistry ; Immunoglobulin Light Chains/chemistry ; Molecular Mimicry ; Molecular Sequence Data ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-10-29
    Description: Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity-determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46(G54W), a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46-gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diskin, Ron -- Scheid, Johannes F -- Marcovecchio, Paola M -- West, Anthony P Jr -- Klein, Florian -- Gao, Han -- Gnanapragasam, Priyanthi N P -- Abadir, Alexander -- Seaman, Michael S -- Nussenzweig, Michel C -- Bjorkman, Pamela J -- P01 AI081677-01/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Dec 2;334(6060):1289-93. doi: 10.1126/science.1213782. Epub 2011 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22033520" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antibody Affinity ; Antigens, CD4/chemistry/metabolism ; Binding Sites ; Complementarity Determining Regions ; Crystallography, X-Ray ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV-1/*immunology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Immunoglobulin Heavy Chains/chemistry/immunology/metabolism ; Molecular Mimicry ; Molecular Sequence Data ; Mutant Proteins/chemistry/immunology/metabolism ; Protein Conformation ; *Protein Engineering ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-17
    Description: Some HIV-infected individuals develop broadly neutralizing antibodies (bNAbs), whereas most develop antibodies that neutralize only a narrow range of viruses (nNAbs). bNAbs, but not nNAbs, protect animals from experimental infection and are likely a key component of an effective vaccine. nNAbs and bNAbs target the same regions of the viral envelope glycoprotein (Env), but for reasons that remain unclear only nNAbs are elicited by Env immunization. We show that in contrast to germline-reverted (gl) bNAbs, glnNAbs recognized diverse recombinant Envs. Moreover, owing to binding affinity differences, nNAb B cell progenitors had an advantage in becoming activated and internalizing Env compared with bNAb B cell progenitors. We then identified an Env modification strategy that minimized the activation of nNAb B cells targeting epitopes that overlap those of bNAbs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290850/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290850/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGuire, Andrew T -- Dreyer, Anita M -- Carbonetti, Sara -- Lippy, Adriana -- Glenn, Jolene -- Scheid, Johannes F -- Mouquet, Hugo -- Stamatatos, Leonidas -- P01 AI094419/AI/NIAID NIH HHS/ -- P01 AI094419-01/AI/NIAID NIH HHS/ -- U19 19AI109632-01/AI/NIAID NIH HHS/ -- U19 AI109632/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1380-3. doi: 10.1126/science.1259206.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seattle Biomedical Research Institute, Seattle, WA 98109, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur and CNRS-URA 1961, 75015 Paris, France. ; Seattle Biomedical Research Institute, Seattle, WA 98109, USA. Department of Global Health, University of Washington, Seattle, WA 98109, USA. lstamata@fhcrc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504724" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/immunology ; Antibodies, Neutralizing/*immunology ; Antibody Affinity ; B-Lymphocytes/immunology ; Binding, Competitive ; Epitopes/immunology ; HIV Antibodies/genetics/*immunology ; HIV-1/*immunology ; Humans ; Lymphocyte Activation ; Models, Molecular ; Receptors, Antigen, B-Cell/genetics/immunology ; Recombinant Proteins/immunology ; env Gene Products, Human Immunodeficiency Virus/chemistry/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-01
    Description: During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV) disfavours homotypic bivalent antibody binding. Here we show that during the human antibody response to HIV, somatic mutations that increase antibody affinity also increase breadth and neutralizing potency. Surprisingly, the responding naive and memory B cells produce polyreactive antibodies, which are capable of bivalent heteroligation between one high-affinity anti-HIV-gp140 combining site and a second low-affinity site on another molecular structure on HIV. Although cross-reactivity to self-antigens or polyreactivity is strongly selected against during B-cell development, it is a common serologic feature of certain infections in humans, including HIV, Epstein-Barr virus and hepatitis C virus. Seventy-five per cent of the 134 monoclonal anti-HIV-gp140 antibodies cloned from six patients with high titres of neutralizing antibodies are polyreactive. Despite the low affinity of the polyreactive combining site, heteroligation demonstrably increases the apparent affinity of polyreactive antibodies to HIV.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mouquet, Hugo -- Scheid, Johannes F -- Zoller, Markus J -- Krogsgaard, Michelle -- Ott, Rene G -- Shukair, Shetha -- Artyomov, Maxim N -- Pietzsch, John -- Connors, Mark -- Pereyra, Florencia -- Walker, Bruce D -- Ho, David D -- Wilson, Patrick C -- Seaman, Michael S -- Eisen, Herman N -- Chakraborty, Arup K -- Hope, Thomas J -- Ravetch, Jeffrey V -- Wardemann, Hedda -- Nussenzweig, Michel C -- 1 P01 AI081677/AI/NIAID NIH HHS/ -- P01 AI081677/AI/NIAID NIH HHS/ -- R01 AI047770/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 30;467(7315):591-5. doi: 10.1038/nature09385.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20882016" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/immunology ; Antibodies, Neutralizing/immunology ; Antibody Affinity/genetics/*immunology ; Antigen-Antibody Reactions/genetics/*immunology ; Cardiolipins/immunology ; Cell Line, Tumor ; Cross Reactions/genetics/immunology ; Enzyme-Linked Immunosorbent Assay ; Epitopes/*chemistry/*immunology ; HIV Antibodies/genetics/*immunology ; HIV Antigens/chemistry/*immunology ; HIV-1/chemistry/*immunology ; Humans ; Immunoglobulin Fab Fragments/genetics/immunology ; Immunoglobulin Heavy Chains/genetics/immunology ; Mutation ; Surface Plasmon Resonance ; env Gene Products, Human Immunodeficiency Virus/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-30
    Description: Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy, the longer half-life of antibodies led to control of viraemia for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809838/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809838/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, Florian -- Halper-Stromberg, Ariel -- Horwitz, Joshua A -- Gruell, Henning -- Scheid, Johannes F -- Bournazos, Stylianos -- Mouquet, Hugo -- Spatz, Linda A -- Diskin, Ron -- Abadir, Alexander -- Zang, Trinity -- Dorner, Marcus -- Billerbeck, Eva -- Labitt, Rachael N -- Gaebler, Christian -- Marcovecchio, Paola M -- Incesu, Reha-Baris -- Eisenreich, Thomas R -- Bieniasz, Paul D -- Seaman, Michael S -- Bjorkman, Pamela J -- Ravetch, Jeffrey V -- Ploss, Alexander -- Nussenzweig, Michel C -- 1UM1AI100663/AI/NIAID NIH HHS/ -- AI081677/AI/NIAID NIH HHS/ -- P01 AI081677/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 6;492(7427):118-22. doi: 10.1038/nature11604. Epub 2012 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23103874" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/immunology/therapeutic use ; Antibodies, Neutralizing/*immunology/*therapeutic use ; Antibody Specificity/immunology ; Disease Models, Animal ; HIV Antibodies/*immunology/*therapeutic use ; HIV Infections/*drug therapy/*immunology/virology ; HIV-1/genetics/growth & development/immunology/isolation & purification ; Half-Life ; Humans ; Immunization, Passive ; Mice ; Mice, Inbred NOD ; Time Factors ; Viral Load/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-07-10
    Description: During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981354/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981354/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Tongqing -- Georgiev, Ivelin -- Wu, Xueling -- Yang, Zhi-Yong -- Dai, Kaifan -- Finzi, Andres -- Kwon, Young Do -- Scheid, Johannes F -- Shi, Wei -- Xu, Ling -- Yang, Yongping -- Zhu, Jiang -- Nussenzweig, Michel C -- Sodroski, Joseph -- Shapiro, Lawrence -- Nabel, Gary J -- Mascola, John R -- Kwong, Peter D -- P30 AI060354/AI/NIAID NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):811-7. doi: 10.1126/science.1192819. Epub 2010 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616231" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/*immunology ; Antibody Affinity ; Antigenic Variation ; Antigens, CD4/chemistry/immunology/metabolism ; Base Sequence ; Binding Sites, Antibody ; Crystallography, X-Ray ; Epitopes/immunology ; HIV Antibodies/*chemistry/*immunology ; HIV Envelope Protein gp120/chemistry/genetics/*immunology ; HIV-1/*immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Neutralization Tests ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-14
    Description: Despite 30 years of study, there is no HIV-1 vaccine and, until recently, there was little hope for a protective immunization. Renewed optimism in this area of research comes in part from the results of a recent vaccine trial and the use of single-cell antibody-cloning techniques that uncovered naturally arising, broad and potent HIV-1-neutralizing antibodies (bNAbs). These antibodies can protect against infection and suppress established HIV-1 infection in animal models. The finding that these antibodies develop in a fraction of infected individuals supports the idea that new approaches to vaccination might be developed by adapting the natural immune strategies or by structure-based immunogen design. Moreover, the success of passive immunotherapy in small-animal models suggests that bNAbs may become a valuable addition to the armamentarium of drugs that work against HIV-1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970325/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970325/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, Florian -- Mouquet, Hugo -- Dosenovic, Pia -- Scheid, Johannes F -- Scharf, Louise -- Nussenzweig, Michel C -- AI 100148-01/AI/NIAID NIH HHS/ -- AI 100663-01/AI/NIAID NIH HHS/ -- P01 AI081677/AI/NIAID NIH HHS/ -- P01 AI100148/AI/NIAID NIH HHS/ -- UM1AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 13;341(6151):1199-204. doi: 10.1126/science.1241144.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. fklein@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24031012" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*therapeutic use ; Acquired Immunodeficiency Syndrome/prevention & control/*therapy ; Antibodies, Neutralizing/biosynthesis/genetics/*immunology ; HIV Antibodies/biosynthesis/genetics/*immunology ; HIV Infections/*therapy ; HIV-1/*immunology ; Humans ; Immunotherapy ; Viral Envelope Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheid, Johannes F -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1175. doi: 10.1126/science.aad7133.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital, Boston, MA 02114, USA. The Rockefeller University, New York, NY 10021, USA. fscheid@partners.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785466" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/genetics/immunology/isolation & purification ; Antibodies, Neutralizing/genetics/*immunology/isolation & purification ; B-Lymphocytes/*immunology ; Cell Separation/methods ; HIV Antibodies/genetics/*immunology/isolation & purification ; HIV Infections/*blood ; Humans ; Immunologic Memory ; Mice ; env Gene Products, Human Immunodeficiency Virus/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caskey, Marina -- Klein, Florian -- Lorenzi, Julio C C -- Seaman, Michael S -- West, Anthony P -- Buckley, Noreen -- Kremer, Gisela -- Nogueira, Lilian -- Braunschweig, Malte -- Scheid, Johannes F -- Horwitz, Joshua A -- Shimeliovich, Irina -- Ben-Avraham, Sivan -- Witmer-Pack, Maggi -- Platten, Martin -- Lehmann, Clara -- Burke, Leah A -- Hawthorne, Thomas -- Gorelick, Robert J -- Walker, Bruce D -- Keler, Tibor -- Gulick, Roy M -- Fatkenheuer, Gerd -- Schlesinger, Sarah J -- Nussenzweig, Michel C -- Nature. 2016 Mar 23. doi: 10.1038/nature17642.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007847" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...