ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-13
    Description: Two Antarctic snowfall climatologies produced from the version R04 of the CloudSat 2C-SNOW PROFILE product are available here. The climatologies cover the period 2007-2010 and the area between 55 and 82 °S. The snowfall rate in the file "CloudSat_2C-SNOW PROFILE_Antarctica_20072010_SRSinf4.nc" has been calculated using only the observations with a snow retrieval status lower than 4 (Wood et al., 2013, Palerme et al., 2018). For producing the file "CloudSat_2C-SNOW-PROFILE_Antarctica_20072010_SRSinf4_1binexcluded.nc", only the observations with a snow retrieval status lower than 4 in which snowfall is observed in at least two vertical bins have been taken into account (Palerme et al., 2018). In addition to the snowfall rate, the number of CloudSat orbits used to assess the mean snowfall rate is also available. The files also provide the snowfall rate uncertainty, which represents the expected uncertainties for individual snowfall rate retrievals (Wood et al., 2013, Palerme et al., 2014).
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-13
    Description: Arctic snowfall climatology produced from the version R05 of the CloudSat 2C-SNOW-PROFILE product is available. It covers the 2007-2010 period over the latitudes from 58.5°N to 82°S. The monthly snowfall rates in this file have been calculated using the observations with: - a snow retrieval status lower than 3 - and a snowfall rate surface confidence 〉 1 Additionnaly, the monthly surface snowfall rate uncertainties, number of CloudSat orbits as well as number of observations are available. The number of observations over these 4 years is not sufficient to consider snowfall rates monthly (Edel et al. 2020). If one wants to obtain monthly snowfall rates, it is necessary to average multiple years.
    Keywords: Arctic; CloudSat; CPR; pan-Arctic; snowfall
    Type: Dataset
    Format: application/x-netcdf, 4.7 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lemonnier, Florentin; Madeleine, Jean-Baptiste; Claud, Chantal; Palerme, Cyril; Genthon, Christophe; L'Ecuyer, Tristan; Wood, Norman B (2020): CloudSat‐Inferred Vertical Structure of Snowfall Over the Antarctic Continent. Journal of Geophysical Research: Atmospheres, 125(2), e2019JD031399, https://doi.org/10.1029/2019JD031399
    Publication Date: 2023-01-30
    Description: Current global warming is causing significant changes in snowfall in polar regions, directly impacting the mass balance of the ice caps. The only water supply in Antarctica, precipitation, is poorly estimated from surface measurements. The onboard cloud-profiling radar of the CloudSat satellite provided the first real opportunity to estimate precipitation at continental scale. Based on CloudSat observations, we propose to explore the vertical structure of precipitation in Antarctica over the 2007-2010 period. A first division of this dataset following a topographical approach (continent versus peripheral regions, with a 2250m topographical criterion) shows a high precipitation rate (275mm/yr at 1200meters above ground level) with low relative seasonal variation (+/-11%) over the peripheral areas. Over the plateau, the precipitation rate is low (34mm/yr at 1200m.a.g.l.) with a much larger relative seasonal variation (+/-143%). A second study that follows a geographical division highlights the average vertical structure of precipitation and temperature depending on the regions and their interactions with topography. In particular, over ice-shelves, we see a strong dependence of the distribution of precipitation on the sea-ice coverage. Finally, the relationship between precipitation and temperature is analyzed and compared with a simple analytical relationship. This study highlights that precipitation is largely dependent on the advection of air masses along the topographic slopes with an average vertical wind of 0.02m/s. This provides new diagnostics to evaluate climate models with a three-dimensional approach of the atmospheric structure of precipitation.
    Keywords: Antarctica; Antarctica_3Dclim; climatology; CloudSat cloud-profiling radar; precipitation; Vertical structure
    Type: Dataset
    Format: application/x-netcdf, 265.9 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-01
    Description: Cloud ice microphysical properties measured or estimated from in situ aircraft observations are compared with global climate models and satellite active remote sensor retrievals. Two large datasets, with direct measurements of the ice water content (IWC) and encompassing data from polar to tropical regions, are combined to yield a large database of in situ measurements. The intention of this study is to identify strengths and weaknesses of the various methods used to derive ice cloud microphysical properties. The in situ data are measured with total water hygrometers, condensed water probes, and particle spectrometers. Data from polar, midlatitude, and tropical locations are included. The satellite data are retrieved from CloudSat/CALIPSO [the CloudSat Ice Cloud Property Product (2C-ICE) and 2C-SNOW-PROFILE] and Global Precipitation Measurement (GPM) Level2A. Although the 2C-ICE retrieval is for IWC, a method to use the IWC to get snowfall rates S is developed. The GPM retrievals are for snowfall rate only. Model results are derived using the Community Atmosphere Model (CAM5) and the Met Office Unified Model [Global Atmosphere 7 (GA7)]. The retrievals and model results are related to the in situ observations using temperature and are partitioned by geographical region. Specific variables compared between the in situ observations, models, and retrievals are the IWC and S. Satellite-retrieved IWCs are reasonably close in value to the in situ observations, whereas the models’ values are relatively low by comparison. Differences between the in situ IWCs and those from the other methods are compounded when S is considered, leading to model snowfall rates that are considerably lower than those derived from the in situ data. Anomalous trends with temperature are noted in some instances.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2016-09-01
    Description: Microphysical data and radar reflectivities (Ze, −15 〈 Ze 〈 10 dB) measured from flights during the NASA Tropical Clouds, Convection, Chemistry and Climate field program are used to relate Ze at X and W band to measured ice water content (IWC). Because nearly collocated Ze and IWC were each directly measured, Ze–IWC relationships could be developed directly. Using the particle size distributions and ice particle masses evaluated based on the direct IWC measurements, reflectivity–snowfall rate (Ze–S) relationships were also derived. For −15 〈 Ze 〈 10 dB, the relationships herein yield larger IWC and S than given by the retrievals and earlier relationships. The sensitivity of radar reflectivity to particle size distribution and size-dependent mass, shape, and orientation introduces significant uncertainties in retrieved quantities since these factors vary substantially globally. To partially circumvent these uncertainties, a W-band Ze–S relationship is developed by relating four years of global CloudSat reflectivity observations measured immediately above the melting layer to retrieved rain rates at the base of the melting layer. The supporting assumptions are that the water mass flux is constant through the melting layer, that the air temperature is nearly 0°C, and that the retrieved rain rates are well constrained. Where Ze 〉 10 dB, this Ze–S relationship conforms well to earlier relationships, but for Ze 〈 10 dB it yields higher IWC and S. Because not all retrieval algorithms estimate either or both IWC and S, the authors use a large aircraft-derived dataset to relate IWC and S. The IWC can then be estimated from S and vice versa.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-01
    Description: The first observationally based near-global shallow cumuliform snowfall census is undertaken using multiyear CloudSat Cloud Profiling Radar observations. CloudSat snowfall observations and snowfall rate estimates from the CloudSat 2C-Snow Water Content and Snowfall Rate (2C-SNOW-PROFILE) product are partitioned between shallow cumuliform and nimbostratus cloud structures by utilizing coincident cloud category classifications from the CloudSat 2B-Cloud Scenario Classification (2B-CLDCLASS) product. Shallow cumuliform (nimbostratus) snowfall events comprise about 36% (59%) of snowfall events in the CloudSat snowfall dataset. The remaining 5% of snowfall events are distributed between other categories. Distinct oceanic versus continental trends exist between the two major snowfall categories, as shallow cumuliform snow-producing clouds occur predominantly over the oceans. Regional differences are also noted in the partitioned dataset, with over-ocean regions near Greenland, the far North Atlantic Ocean, the Barents Sea, the western Pacific Ocean, the southern Bering Sea, and the Southern Hemispheric pan-oceanic region containing distinct shallow snowfall occurrence maxima exceeding 60%. Certain Northern Hemispheric continental regions also experience frequent shallow cumuliform snowfall events (e.g., inland Russia), as well as some mountainous regions. CloudSat-generated snowfall rates are also partitioned between the two major snowfall categories to illustrate the importance of shallow snow-producing cloud structures to the average annual snowfall. While shallow cumuliform snowfall produces over 50% of the annual estimated surface snowfall flux regionally, about 18% (82%) of global snowfall is attributed to shallow (nimbostratus) snowfall. This foundational spaceborne snowfall study will be utilized for follow-on evaluative studies with independent model, reanalysis, and ground-based observational datasets to characterize respective dataset biases and to better quantify CloudSat snowfall detection and quantitative snowfall estimate uncertainties.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-01
    Description: Two methods for deriving relationships between the equivalent radar reflectivity factor Ze and the snowfall rate S at three radar wavelengths are described. The first method uses collocations of in situ aircraft (microphysical observations) and overflying aircraft (radar observations) from two field programs to develop Ze–S relationships. In the second method, measurements of Ze at the top of the melting layer (ML), from radars on the Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Measurement (GPM), and CloudSat satellites, are related to the retrieved rainfall rate R at the base of the ML, assuming that the mass flux through the ML is constant. Retrievals of R are likely to be more reliable than S because far fewer assumptions are involved in the retrieval and because supporting ground-based validation data are available. The Ze–S relationships developed here for the collocations and the mass-flux technique are compared with those derived from level 2 retrievals from the standard satellite products and with a number of relationships developed and reported by others. It is shown that there are substantial differences among them. The relationships developed here promise improvements in snowfall-rate retrievals from satellite-based radar measurements.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-24
    Description: Remote-sensing observations are needed to estimate the regional and global impacts of snow. However, to retrieve accurate estimates of snow mass and rate, these observations require augmentation through additional information and assumptions about hydrometeor properties. The Precipitation Imaging Package (PIP) provides information about precipitation characteristics and can be utilized to improve estimates of snowfall rate and accumulation. Here, the goal is to demonstrate the quality and utility of two higher-order PIP-derived products: liquid water equivalent snow rate and an approximation of volume-weighted density called equivalent density. Accuracy of the PIP snow rate and equivalent density is obtained through intercomparison with established retrieval methods and through evaluation with colocated ground-based observations. The results confirm the ability of the PIP-derived products to quantify properties of snow rate and equivalent density, and demonstrate that the PIP produces physically realistic snow characteristics. When compared to the National Weather Service (NWS) snow field measurements of six-hourly accumulation, the PIP-derived accumulations were biased only +2.48% higher. Additionally, this work illustrates fundamentally different microphysical and bulk features of low and high snow-to-liquid ratio events, through assessment of observed particle size distributions, retrieved mass coefficients, and bulk properties. Importantly, this research establishes the role that PIP observations and higher-order products can serve for constraining microphysical assumptions in ground-based and spaceborne remotely sensed snowfall retrievals.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-07-20
    Description: Estimates of snowfall rate as derived from radar reflectivities alone are non-unique. Different combinations of snowflake microphysical properties and particle fall speeds can conspire to produce nearly identical snowfall rates for given radar reflectivity signatures. Such ambiguities can result in retrieval uncertainties on the order of 100–200 % for individual events. Here, we use observations of particle size distribution (PSD), fall speed, and snowflake habit from the Multi-Angle Snowflake Camera (MASC) to constrain estimates of snowfall derived from Ka-band ARM zenith radar (KAZR) measurements at the Atmospheric Radiation Measurement (ARM) North Slope Alaska (NSA) Climate Research Facility site at Barrow. MASC measurements of microphysical properties with uncertainties are introduced into a modified form of the optimal-estimation CloudSat snowfall algorithm (2C-SNOW-PROFILE) via the a priori guess and variance terms. Use of the MASC fall speed, MASC PSD, and CloudSat snow particle model as base assumptions resulted in retrieved total accumulations with a −18 % difference relative to nearby National Weather Service (NWS) observations over five snow events. The average error was 36 % for the individual events. Use of different but reasonable combinations of retrieval assumptions resulted in estimated snowfall accumulations with differences ranging from −64 to +122 % for the same storm events. Retrieved snowfall rates were particularly sensitive to assumed fall speed and habit, suggesting that in situ measurements can help to constrain key snowfall retrieval uncertainties. More accurate knowledge of these properties dependent upon location and meteorological conditions should help refine and improve ground- and space-based radar estimates of snowfall.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...