ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-25
    Description: Multiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated. Rearrangements are more frequent over gene footprints and most are intrachromosomal. Multiple rearrangement architectures are present, but tandem duplications are particularly common in some cancers, perhaps reflecting a specific defect in DNA maintenance. Short overlapping sequences at most rearrangement junctions indicate that these have been mediated by non-homologous end-joining DNA repair, although varying sequence patterns indicate that multiple processes of this type are operative. Several expressed in-frame fusion genes were identified but none was recurrent. The study provides a new perspective on cancer genomes, highlighting the diversity of somatic rearrangements and their potential contribution to cancer development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398135/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398135/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, Philip J -- McBride, David J -- Lin, Meng-Lay -- Varela, Ignacio -- Pleasance, Erin D -- Simpson, Jared T -- Stebbings, Lucy A -- Leroy, Catherine -- Edkins, Sarah -- Mudie, Laura J -- Greenman, Chris D -- Jia, Mingming -- Latimer, Calli -- Teague, Jon W -- Lau, King Wai -- Burton, John -- Quail, Michael A -- Swerdlow, Harold -- Churcher, Carol -- Natrajan, Rachael -- Sieuwerts, Anieta M -- Martens, John W M -- Silver, Daniel P -- Langerod, Anita -- Russnes, Hege E G -- Foekens, John A -- Reis-Filho, Jorge S -- van 't Veer, Laura -- Richardson, Andrea L -- Borresen-Dale, Anne-Lise -- Campbell, Peter J -- Futreal, P Andrew -- Stratton, Michael R -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- CA089393/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1005-10. doi: 10.1038/nature08645.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033038" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/*genetics ; Cell Line, Tumor ; Cells, Cultured ; *Chromosome Aberrations ; DNA Breaks ; Female ; Gene Rearrangement/*genetics ; Genome, Human/*genetics ; Genomic Library ; Humans ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-09
    Description: Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303130/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303130/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scally, Aylwyn -- Dutheil, Julien Y -- Hillier, LaDeana W -- Jordan, Gregory E -- Goodhead, Ian -- Herrero, Javier -- Hobolth, Asger -- Lappalainen, Tuuli -- Mailund, Thomas -- Marques-Bonet, Tomas -- McCarthy, Shane -- Montgomery, Stephen H -- Schwalie, Petra C -- Tang, Y Amy -- Ward, Michelle C -- Xue, Yali -- Yngvadottir, Bryndis -- Alkan, Can -- Andersen, Lars N -- Ayub, Qasim -- Ball, Edward V -- Beal, Kathryn -- Bradley, Brenda J -- Chen, Yuan -- Clee, Chris M -- Fitzgerald, Stephen -- Graves, Tina A -- Gu, Yong -- Heath, Paul -- Heger, Andreas -- Karakoc, Emre -- Kolb-Kokocinski, Anja -- Laird, Gavin K -- Lunter, Gerton -- Meader, Stephen -- Mort, Matthew -- Mullikin, James C -- Munch, Kasper -- O'Connor, Timothy D -- Phillips, Andrew D -- Prado-Martinez, Javier -- Rogers, Anthony S -- Sajjadian, Saba -- Schmidt, Dominic -- Shaw, Katy -- Simpson, Jared T -- Stenson, Peter D -- Turner, Daniel J -- Vigilant, Linda -- Vilella, Albert J -- Whitener, Weldon -- Zhu, Baoli -- Cooper, David N -- de Jong, Pieter -- Dermitzakis, Emmanouil T -- Eichler, Evan E -- Flicek, Paul -- Goldman, Nick -- Mundy, Nicholas I -- Ning, Zemin -- Odom, Duncan T -- Ponting, Chris P -- Quail, Michael A -- Ryder, Oliver A -- Searle, Stephen M -- Warren, Wesley C -- Wilson, Richard K -- Schierup, Mikkel H -- Rogers, Jane -- Tyler-Smith, Chris -- Durbin, Richard -- 062023/Wellcome Trust/United Kingdom -- 075491/Z/04/Wellcome Trust/United Kingdom -- 077009/Wellcome Trust/United Kingdom -- 077192/Wellcome Trust/United Kingdom -- 077198/Wellcome Trust/United Kingdom -- 089066/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 095908/Wellcome Trust/United Kingdom -- 15603/Cancer Research UK/United Kingdom -- 202218/European Research Council/International -- A15603/Cancer Research UK/United Kingdom -- G0501331/Medical Research Council/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- HG002385/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- WT062023/Wellcome Trust/United Kingdom -- WT077009/Wellcome Trust/United Kingdom -- WT077192/Wellcome Trust/United Kingdom -- WT077198/Wellcome Trust/United Kingdom -- WT089066/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Mar 7;483(7388):169-75. doi: 10.1038/nature10842.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22398555" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Evolution, Molecular ; Female ; Gene Expression Regulation ; *Genetic Speciation ; Genetic Variation/genetics ; Genome/*genetics ; Genomics ; Gorilla gorilla/*genetics ; Humans ; Macaca mulatta/genetics ; Molecular Sequence Data ; Pan troglodytes/genetics ; Phylogeny ; Pongo/genetics ; Proteins/genetics ; Sequence Alignment ; Species Specificity ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-15
    Description: Establishment and cryptic transmission of Zika virus in Brazil and the Americas Nature 546, 7658 (2017). doi:10.1038/nature22401 Authors: N. R. Faria, J. Quick, I.M. Claro, J. Thézé, J. G. de Jesus, M. Giovanetti, M. U. G. Kraemer, S. C. Hill, A. Black, A. C. da Costa, L. C. Franco, S. P. Silva, C.-H. Wu, J. Raghwani, S. Cauchemez, L. du Plessis, M. P. Verotti, W. K. de Oliveira, E. H. Carmo, G. E. Coelho, A. C. F. S. Santelli, L. C. Vinhal, C. M. Henriques, J. T. Simpson, M. Loose, K. G. Andersen, N. D. Grubaugh, S. Somasekar, C. Y. Chiu, J. E. Muñoz-Medina, C. R. Gonzalez-Bonilla, C. F. Arias, L. L. Lewis-Ximenez, S. A. Baylis, A. O. Chieppe, S. F. Aguiar, C. A. Fernandes, P. S. Lemos, B. L. S. Nascimento, H. A. O. Monteiro, I. C. Siqueira, M. G. de Queiroz, T. R. de Souza, J. F. Bezerra, M. R. Lemos, G. F. Pereira, D. Loudal, L. C. Moura, R. Dhalia, R. F. França, T. Magalhães, E. T. Marques, T. Jaenisch, G. L. Wallau, M. C. de Lima, V. Nascimento, E. M. de Cerqueira, M. M. de Lima, D. L. Mascarenhas, J. P. Moura Neto, A. S. Levin, T. R. Tozetto-Mendoza, S. N. Fonseca, M. C. Mendes-Correa, F. P. Milagres, A. Segurado, E. C. Holmes, A. Rambaut, T. Bedford, M. R. T. Nunes, E. C. Sabino, L. C. J. Alcantara, N. J. Loman & O. G. Pybus Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 2016) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 2016). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus.
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-04
    Description: The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 x 10(-3) and 1.42 x 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quick, Joshua -- Loman, Nicholas J -- Duraffour, Sophie -- Simpson, Jared T -- Severi, Ettore -- Cowley, Lauren -- Bore, Joseph Akoi -- Koundouno, Raymond -- Dudas, Gytis -- Mikhail, Amy -- Ouedraogo, Nobila -- Afrough, Babak -- Bah, Amadou -- Baum, Jonathan H J -- Becker-Ziaja, Beate -- Boettcher, Jan Peter -- Cabeza-Cabrerizo, Mar -- Camino-Sanchez, Alvaro -- Carter, Lisa L -- Doerrbecker, Juliane -- Enkirch, Theresa -- Garcia-Dorival, Isabel -- Hetzelt, Nicole -- Hinzmann, Julia -- Holm, Tobias -- Kafetzopoulou, Liana Eleni -- Koropogui, Michel -- Kosgey, Abigael -- Kuisma, Eeva -- Logue, Christopher H -- Mazzarelli, Antonio -- Meisel, Sarah -- Mertens, Marc -- Michel, Janine -- Ngabo, Didier -- Nitzsche, Katja -- Pallasch, Elisa -- Patrono, Livia Victoria -- Portmann, Jasmine -- Repits, Johanna Gabriella -- Rickett, Natasha Y -- Sachse, Andreas -- Singethan, Katrin -- Vitoriano, Ines -- Yemanaberhan, Rahel L -- Zekeng, Elsa G -- Racine, Trina -- Bello, Alexander -- Sall, Amadou Alpha -- Faye, Ousmane -- Faye, Oumar -- Magassouba, N'Faly -- Williams, Cecelia V -- Amburgey, Victoria -- Winona, Linda -- Davis, Emily -- Gerlach, Jon -- Washington, Frank -- Monteil, Vanessa -- Jourdain, Marine -- Bererd, Marion -- Camara, Alimou -- Somlare, Hermann -- Camara, Abdoulaye -- Gerard, Marianne -- Bado, Guillaume -- Baillet, Bernard -- Delaune, Deborah -- Nebie, Koumpingnin Yacouba -- Diarra, Abdoulaye -- Savane, Yacouba -- Pallawo, Raymond Bernard -- Gutierrez, Giovanna Jaramillo -- Milhano, Natacha -- Roger, Isabelle -- Williams, Christopher J -- Yattara, Facinet -- Lewandowski, Kuiama -- Taylor, James -- Rachwal, Phillip -- Turner, Daniel J -- Pollakis, Georgios -- Hiscox, Julian A -- Matthews, David A -- O'Shea, Matthew K -- Johnston, Andrew McD -- Wilson, Duncan -- Hutley, Emma -- Smit, Erasmus -- Di Caro, Antonino -- Wolfel, Roman -- Stoecker, Kilian -- Fleischmann, Erna -- Gabriel, Martin -- Weller, Simon A -- Koivogui, Lamine -- Diallo, Boubacar -- Keita, Sakoba -- Rambaut, Andrew -- Formenty, Pierre -- Gunther, Stephan -- Carroll, Miles W -- Medical Research Council/United Kingdom -- England -- Nature. 2016 Feb 11;530(7589):228-32. doi: 10.1038/nature16996. Epub 2016 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK. ; The European Mobile Laboratory Consortium, Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany. ; Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany. ; Ontario Institute for Cancer Research, Toronto M5G 0A3, Canada. ; Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada. ; European Centre for Disease Prevention and Control (ECDC), 171 65 Solna, Sweden. ; National Infection Service, Public Health England, London NW9 5EQ, UK. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 2FL, UK. ; Postgraduate Training for Applied Epidemiology (PAE, German FETP), Robert Koch Institute, D-13302 Berlin, Germany. ; National Infection Service, Public Health England, Porton Down, Wiltshire SP4 0JG, UK. ; Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland. ; Robert Koch Institute, D-13302 Berlin, Germany. ; University College London, London WC1E 6BT, UK. ; Paul-Ehrlich-Institut, Division of Veterinary Medicine, D-63225 Langen, Germany. ; Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK. ; Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, KU Leuven, Leuven B-3000, Belgium. ; Ministry of Health Guinea, Conakry BP 585, Guinea. ; Kenya Medical Research Institute, Nairobi P.O. BOX 54840 - 00200, Kenya. ; National Institute for Infectious Diseases L. Spallanzani, 00149 Rome, Italy. ; Friedrich-Loeffler-Institute, D-17493 Greifswald, Germany. ; Federal Office for Civil Protection, Spiez Laboratory, 3700 Spiez, Switzerland. ; Janssen-Cilag, Stockholm, Box 7073 - 19207, Sweden. ; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK. ; Institute of Virology, Technische Universitat Munchen, D-81675 Munich, Germany. ; Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada. ; Institut Pasteur Dakar, Dakar, DP 220 Senegal. ; Laboratoire de Fievres Hemorragiques de Guinee, Conakry BP 5680, Guinea. ; Sandia National Laboratories, PO Box 5800 MS1363, Albuquerque, New Mexico 87185-1363, USA. ; Ratoma Ebola Diagnostic Center, Conakry, Guinea. ; MRIGlobal, Kansas City, Missouri 64110-2241, USA. ; Expertise France, Laboratoire K-plan de Forecariah en Guinee, 75006 Paris, France. ; Federation des Laboratoires - HIA Begin, 94163 Saint-Mande cedex, France. ; Laboratoire de Biologie - Centre de Traitement des Soignants, Conakry, Guinea. ; World Health Organization, Conakry BP 817, Guinea. ; London School of Hygiene and Tropical Medicine, London EC1E 7HT, UK. ; Norwegian Institute of Public Health, PO Box 4404 Nydalen, 0403 Oslo, Norway. ; Public Health Wales, Cardiff CF11 9LJ, UK. ; Defence Science and Technology Laboratory (Dstl) Porton Down, Salisbury SP4 0JQ, UK. ; Oxford Nanopore Technologies, Oxford OX4 4GA, UK. ; Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK. ; Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham B15 2TH, UK. ; Centre of Defence Pathology, Royal Centre for Defence Medicine, Birmingham B15 2TH, UK. ; Queen Elizabeth Hospital, Birmingham B12 2TH, UK. ; Bundeswehr Institute of Microbiology, D-80937 Munich, Germany. ; Institut National de Sante Publique, Conakry BP 1147, Guinea. ; Fogarty International Center, National Institutes of Health, Bethesda, MD 20892-2220, USA. ; Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh EH9 2FL, UK. ; University of Southampton, South General Hospital, Southampton SO16 6YD, UK. ; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, PHE Porton Down, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26840485" target="_blank"〉PubMed〈/a〉
    Keywords: Aircraft ; Disease Outbreaks/statistics & numerical data ; Ebolavirus/classification/*genetics/pathogenicity ; *Epidemiological Monitoring ; Genome, Viral/*genetics ; Guinea/epidemiology ; Hemorrhagic Fever, Ebola/*epidemiology/*virology ; Humans ; Mutagenesis/genetics ; Mutation Rate ; Sequence Analysis, DNA/*instrumentation/*methods ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 104 (1982), S. 7155-7161 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 101 (1979), S. 3325-3331 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1052-9306
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In a number of infectious and inflammatory diseases, stimulation of the immune system can lead to increased accumulation of tryptophan metabolites via induction of kynurenine pathway enzymes in extrahepatic tissues. We developed a liquid chromatographic/mass spectrometric (LC/MS) method suitable for tracing the disposition of 13C isotopomers of L-tryptophan and L-kynurenine in various cultured cell, tissue slice, and whole animal model systems used to investigate tryptophan flux through the kynurenine pathway. The method employs extractive derivatization of the analytes and their 2H internal standards with pentafluorobenzyl bromide in order to enhance the negative ion chemical ionization (NICI) mass spectrometric response. Normal-phase liquid chromatographic separation of derivatized analytes was optimized using a silica column with organic solvents, followed by particle beam transfer and NICI-MS. Standard curves were linear over the range 1-250 ng per sample. Particle beam and mass spectrometric operating parameters were optimized with direct flow injections of 1-(methylamino) anthra-quinone, which is an ideal test compound for the evaluation of LC/NICI-MS. The developed method was used to quantify the conversion of (13C6)L-tryptophan to (13C6)L-kynurenine by human monocytes (THP-1) stimulated with interferon-γ, lung and brain tissue slices obtained from gerbils immune-stimulated with pokeweed mitogen. The effect of whole body immune stimulation on the plasma levels of engogenous L-kynurenine in mice stimulated with interferon-γ was also quantified.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1982-12-01
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2014-03-22
    Description: The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus . We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus , despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus . We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...