ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-24
    Description: Nature Climate Change 5 960 doi: 10.1038/nclimate2794
    Print ISSN: 1758-678X
    Electronic ISSN: 1758-6798
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2015-03-26
    Description: Nature Climate Change 5 386 doi: 10.1038/nclimate2587
    Print ISSN: 1758-678X
    Electronic ISSN: 1758-6798
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-06-18
    Description: Recent increases in the seasonal amplitude of atmospheric carbon dioxide (CO2) at high latitudes suggest a widespread biospheric response to high-latitude warming. The seasonal amplitude of net ecosystem carbon exchange by northern Siberian ecosystems is shown to be greater in disturbed than undisturbed sites, due to increased summer influx and increased winter efflux. Increased disturbance could therefore contribute significantly to the amplified seasonal cycle of atmospheric carbon dioxide at high latitudes. Warm temperatures reduced summer carbon influx, suggesting that high-latitude warming, if it occurred, would be unlikely to increase seasonal amplitude of carbon exchange.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimov -- Davidov -- Zimova -- Davidova -- Chapin 3rd -- Chapin -- Reynolds -- New York, N.Y. -- Science. 1999 Jun 18;284(5422):1973-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉North-East Scientific Station, Pacific Institute for Geography, Far-East Branch, Russian Academy of Sciences, Republic of Sakha, Yakutia, 678830 Cherskii, Russia. Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775-7000.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10373112" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-03-10
    Description: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sala, O E -- Chapin, F S 3rd -- Armesto, J J -- Berlow, E -- Bloomfield, J -- Dirzo, R -- Huber-Sanwald, E -- Huenneke, L F -- Jackson, R B -- Kinzig, A -- Leemans, R -- Lodge, D M -- Mooney, H A -- Oesterheld, M -- Poff, N L -- Sykes, M T -- Walker, B H -- Walker, M -- Wall, D H -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1770-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Instituto de Investigaciones Fisiologicas y Ecologicas vinculadas a la Agricultura, Faculty of Agronomy, University of Buenos Aires, Avenida San Martin 4453, Buenos Aires 1417, Argentina. sala@ifeva.edu.ar〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710299" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Animals ; Atmosphere ; Carbon Dioxide ; Climate ; *Ecosystem ; Fresh Water ; Models, Biological ; Nitrogen
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rockstrom, Johan -- Steffen, Will -- Noone, Kevin -- Persson, Asa -- Chapin, F Stuart 3rd -- Lambin, Eric F -- Lenton, Timothy M -- Scheffer, Marten -- Folke, Carl -- Schellnhuber, Hans Joachim -- Nykvist, Bjorn -- de Wit, Cynthia A -- Hughes, Terry -- van der Leeuw, Sander -- Rodhe, Henning -- Sorlin, Sverker -- Snyder, Peter K -- Costanza, Robert -- Svedin, Uno -- Falkenmark, Malin -- Karlberg, Louise -- Corell, Robert W -- Fabry, Victoria J -- Hansen, James -- Walker, Brian -- Liverman, Diana -- Richardson, Katherine -- Crutzen, Paul -- Foley, Jonathan A -- England -- Nature. 2009 Sep 24;461(7263):472-5. doi: 10.1038/461472a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stockholm Resilience Centre, Stockholm University, Kraftriket 2B, 10691 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779433" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Civilization ; Conservation of Natural Resources/*methods/trends ; *Earth (Planet) ; Ecology/*methods/*trends ; *Ecosystem ; Extinction, Biological ; Fossils ; Green Chemistry Technology/*methods/trends ; Greenhouse Effect ; History, 20th Century ; History, 21st Century ; History, Ancient ; *Human Activities/history ; Humans ; Nitrogen/metabolism ; Phosphorus/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-10-27
    Description: Polar ice-core records suggest that an arctic or boreal source was responsible for more than 30% of the large increase in global atmospheric methane (CH4) concentration during deglacial climate warming; however, specific sources of that CH4 are still debated. Here we present an estimate of past CH4 flux during deglaciation from bubbling from thermokarst (thaw) lakes. Based on high rates of CH4 bubbling from contemporary arctic thermokarst lakes, high CH4 production potentials of organic matter from Pleistocene-aged frozen sediments, and estimates of the changing extent of these deposits as thermokarst lakes developed during deglaciation, we find that CH4 bubbling from newly forming thermokarst lakes comprised 33 to 87% of the high-latitude increase in atmospheric methane concentration and, in turn, contributed to the climate warming at the Pleistocene-Holocene transition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walter, K M -- Edwards, M E -- Grosse, G -- Zimov, S A -- Chapin, F S 3rd -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):633-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Water and Environmental Research Center, University of Alaska, Fairbanks, AK 99775, USA. ftkmw1@uaf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962561" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-07-26
    Description: Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foley, Jonathan A -- Defries, Ruth -- Asner, Gregory P -- Barford, Carol -- Bonan, Gordon -- Carpenter, Stephen R -- Chapin, F Stuart -- Coe, Michael T -- Daily, Gretchen C -- Gibbs, Holly K -- Helkowski, Joseph H -- Holloway, Tracey -- Howard, Erica A -- Kucharik, Christopher J -- Monfreda, Chad -- Patz, Jonathan A -- Prentice, I Colin -- Ramankutty, Navin -- Snyder, Peter K -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):570-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Sustainability and the Global Environment (SAGE), University of Wisconsin, 1710 University Avenue, Madison, WI 53726, USA. jfoley@wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16040698" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Air Pollution ; Animals ; Animals, Wild ; Climate ; Communicable Diseases/epidemiology/transmission ; *Conservation of Natural Resources ; *Ecosystem ; *Environment ; Fresh Water ; Human Activities ; Humans ; Policy Making ; Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-09-24
    Description: A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapin, F S 3rd -- Sturm, M -- Serreze, M C -- McFadden, J P -- Key, J R -- Lloyd, A H -- McGuire, A D -- Rupp, T S -- Lynch, A H -- Schimel, J P -- Beringer, J -- Chapman, W L -- Epstein, H E -- Euskirchen, E S -- Hinzman, L D -- Jia, G -- Ping, C-L -- Tape, K D -- Thompson, C D C -- Walker, D A -- Welker, J M -- New York, N.Y. -- Science. 2005 Oct 28;310(5748):657-60. Epub 2005 Sep 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Arctic Biology; University of Alaska Fairbanks, Fairbanks, AK 99775, USA. terry.chapin@uaf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16179434" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Arctic Regions ; *Greenhouse Effect ; Picea ; Seasons ; Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-22
    Description: Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch. However, the same thermokarst lakes can also sequester carbon, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 +/- 10 grams of carbon per square metre per year; mean +/- standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears, potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anthony, K M Walter -- Zimov, S A -- Grosse, G -- Jones, M C -- Anthony, P M -- Chapin, F S 3rd -- Finlay, J C -- Mack, M C -- Davydov, S -- Frenzel, P -- Frolking, S -- England -- Nature. 2014 Jul 24;511(7510):452-6. doi: 10.1038/nature13560. Epub 2014 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Water and Environmental Research Center, University of Alaska, Fairbanks, Alaska 99775-5860, USA. ; Northeast Scientific Station, Pacific Institute for Geography, Far-East Branch, Russian Academy of Sciences, Cherskii 678830, Russia. ; 1] Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775-7320, USA [2] Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany. ; 1] Water and Environmental Research Center, University of Alaska, Fairbanks, Alaska 99775-5860, USA [2] US Geological Survey, Reston, Virginia 20192, USA. ; Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775-7000, USA. ; Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota 55108, USA. ; Department of Biology, University of Florida, Gainesville, Florida 32611, USA. ; Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany. ; Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824-3525, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043014" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Atmosphere/chemistry ; Canada ; Carbon Dioxide/analysis ; *Carbon Sequestration ; Climate ; Freezing ; Geologic Sediments/chemistry ; Greenhouse Effect ; History, Ancient ; Lakes/*chemistry ; Methane/analysis ; Siberia ; Soil/chemistry ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...