ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-06-14
    Description: Energies, Vol. 11, Pages 1537: Jerk Analysis of a Power-Split Hybrid Electric Vehicle Based on a Data-Driven Vehicle Dynamics Model Energies doi: 10.3390/en11061537 Authors: Xiaohua Zeng Haoyong Cui Dafeng Song Nannan Yang Tong Liu Huiyong Chen Yinshu Wang Yulong Lei Given its highly coupled multi-power sources with diverse dynamic response characteristics, the mode transition process of a power-split Hybrid Electric Vehicle (HEV) can easily lead to unanticipated passenger-felt jerks. Moreover, difficulties in parameter estimation, especially power-source dynamic torque estimation, result in new challenges for jerk reduction. These two aspects entangle with each other and constitute a complicated coupling problem which obstructs the realization of a valid anti-jerk method. In this study, a vehicle dynamics model with reference to a data-driven modeling method is first established, integrating a full-time artificial neural network engine dynamic model that can accurately predict engine dynamic torque. Then the essential reason for the occurrence of vehicle jerks in real driving conditions is analyzed. Finally, to smooth the mode transition process, a more practical anti-jerk strategy based on power-source torque changing rate limitation (TCRL) is proposed. Verification studies indicate that the data-driven vehicle dynamics model has enough accuracy to reflect the vehicle dynamic characteristics, and the proposed TCRL strategy could reduce the vehicle jerk by up to 85.8%, without any sacrifice of vehicle performance. This research provides a feasible method for precise modeling of vehicle dynamics and a reference for improving the riding comfort of hybrid electric vehicles.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...