ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-09-18
    Description: Sensors, Vol. 18, Pages 3137: Structured Background Modeling for Hyperspectral Anomaly Detection Sensors doi: 10.3390/s18093137 Authors: Fei Li Lei Zhang Xiuwei Zhang Yanjia Chen Dongmei Jiang Genping Zhao Yanning Zhang Background modeling has been proven to be a promising method of hyperspectral anomaly detection. However, due to the cluttered imaging scene, modeling the background of an hyperspectral image (HSI) is often challenging. To mitigate this problem, we propose a novel structured background modeling-based hyperspectral anomaly detection method, which clearly improves the detection accuracy through exploiting the block-diagonal structure of the background. Specifically, to conveniently model the multi-mode characteristics of background, we divide the full-band patches in an HSI into different background clusters according to their spatial-spectral features. A spatial-spectral background dictionary is then learned for each cluster with a principal component analysis (PCA) learning scheme. When being represented onto those dictionaries, the background often exhibits a block-diagonal structure, while the anomalous target shows a sparse structure. In light of such an observation, we develop a low-rank representation based anomaly detection framework that can appropriately separate the sparse anomaly from the block-diagonal background. To optimize this framework effectively, we adopt the standard alternating direction method of multipliers (ADMM) algorithm. With extensive experiments on both synthetic and real-world datasets, the proposed method achieves an obvious improvement in detection accuracy, compared with several state-of-the-art hyperspectral anomaly detection methods.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...