ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: The project's main contributions have been in the area of student support. Throughout the project, at least one, in some cases two, undergraduate students have been supported. By working with the project, these students gained valuable knowledge involving the scientific research project, including the not-so-pleasant reporting requirements to the funding agencies. The other important contribution was towards the establishment of a graduate program in computer science at Hampton University. Primarily, the PAPER project has served as the main research basis in seeking funds from other agencies, such as the National Science Foundation, for establishing a research infrastructure in the department. In technical areas, especially in the first phase, we believe the trip to Jet Propulsion Laboratory, and gathering together all the pertinent information involving experimental computer architectures aimed for planetary explorations was very helpful. Indeed, if this effort is to be revived in the future due to congressional funding for planetary explorations, say an unmanned mission to Mars, our interim report will be an important starting point. In other technical areas, our simulator has pinpointed and highlighted several important performance issues related to the design of operating system kernels for MIMD machines. In particular, the critical issue of how the kernel itself will run in parallel on a multiple-processor system has been addressed through the various ready list organization and access policies. In the area of neural computing, our main contribution was an introductory tutorial package to familiarize the researchers at NASA with this new and promising field zone axes (20). Finally, we have introduced the notion of reversibility in programming systems which may find applications in various areas of space research.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-196429 , NAS 1.26:196429
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-185370 , NAS 1.26:185370
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Parallelization of Rocket Engine System Software (PRESS) project is part of a collaborative effort with Southern University at Baton Rouge (SUBR), University of West Florida (UWF), and Jackson State University (JSU). The project has started on October 19, 1995, and after a three-year period corresponding to project phases and fiscal-year funding by NASA Lewis Research Center (now Glenn Research Center), has ended on October 18, 1998. The one-year no-cost extension period was granted on June 7, 1998, until October 19, 1999. The aim of this one year no-cost extension period was to carry out further research to complete the work and lay the groundwork for subsequent research in the area of aerospace engine design optimization software tools. The previous progress for the research has been reported in great detail in respective interim and final research progress reports, seven of them, in all. While the purpose of this report is to be a final summary and an valuative view of the entire work since the first year funding, the following is a quick recap of the most important sections of the interim report dated April 30, 1999.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We have outlined our work in the last half of the funding period. We have shown how a demo package for RESSAP using MPI can be done. However, we also mentioned the difficulties with the UNIX platform. We have reiterated some of the suggestions made during the presentation of the progress of the at Fourth Annual HBCU Conference. Although we have discussed, in some detail, how TURBDES/PUMPDES software can be run in parallel using MPI, at present, we are unable to experiment any further with either MPI or PVM. Due to X windows not being implemented, we are also not able to experiment further with XPVM, which it will be recalled, has a nice GUI interface. There are also some concerns, on our part, about MPI being an appropriate tool. The best thing about MPr is that it is public domain. Although and plenty of documentation exists for the intricacies of using MPI, little information is available on its actual implementations. Other than very typical, somewhat contrived examples, such as Jacobi algorithm for solving Laplace's equation, there are few examples which can readily be applied to real situations, such as in our case. In effect, the review of literature on both MPI and PVM, and there is a lot, indicate something similar to the enormous effort which was spent on LISP and LISP-like languages as tools for artificial intelligence research. During the development of a book on programming languages [12], when we searched the literature for very simple examples like taking averages, reading and writing records, multiplying matrices, etc., we could hardly find a any! Yet, so much was said and done on that topic in academic circles. It appears that we faced the same problem with MPI, where despite significant documentation, we could not find even a simple example which supports course-grain parallelism involving only a few processes. From the foregoing, it appears that a new direction may be required for more productive research during the extension period (10/19/98 - 10/18/99). At the least, the research would need to be done on Windows 95/Windows NT based platforms. Moreover, with the acquisition of Lahey Fortran package for PC platform, and the existing Borland C + + 5. 0, we can do work on C + + wrapper issues. We have carefully studied the blueprint for Space Transportation Propulsion Integrated Design Environment for the next 25 years [13] and found the inclusion of HBCUs in that effort encouraging. Especially in the long period for which a map is provided, there is no doubt that HBCUs will grow and become better equipped to do meaningful research. In the shorter period, as was suggested in our presentation at the HBCU conference, some key decisions regarding the aging Fortran based software for rocket propellants will need to be made. One important issue is whether or not object oriented languages such as C + + or Java should be used for distributed computing. Whether or not "distributed computing" is necessary for the existing software is yet another, larger, question to be tackled with.
    Keywords: Computer Programming and Software
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Parallelization of Rocket Engine System Software (PRESS) project is part of a collaborative effort with Southern University at Baton Rouge (SUBR), University of West Florida (UWF), and Jackson State University (JSU). The second-year funding, which supports two graduate students enrolled in our new Master's program in Computer Science at Hampton University and the principal investigator, have been obtained for the period from October 19, 1996 through October 18, 1997. The key part of the interim report was new directions for the second year funding. This came about from discussions during Rocket Engine Numeric Simulator (RENS) project meeting in Pensacola on January 17-18, 1997. At that time, a software agreement between Hampton University and NASA Lewis Research Center had already been concluded. That agreement concerns off-NASA-site experimentation with PUMPDES/TURBDES software. Before this agreement, during the first year of the project, another large-scale FORTRAN-based software, Two-Dimensional Kinetics (TDK), was being used for translation to an object-oriented language and parallelization experiments. However, that package proved to be too complex and lacking sufficient documentation for effective translation effort to the object-oriented C + + source code. The focus, this time with better documented and more manageable PUMPDES/TURBDES package, was still on translation to C + + with design improvements. At the RENS Meeting, however, the new impetus for the RENS projects in general, and PRESS in particular, has shifted in two important ways. One was closer alignment with the work on Numerical Propulsion System Simulator (NPSS) through cooperation and collaboration with LERC ACLU organization. The other was to see whether and how NASA's various rocket design software can be run over local and intra nets without any radical efforts for redesign and translation into object-oriented source code. There were also suggestions that the Fortran based code be encapsulated in C + + code thereby facilitating reuse without undue development effort. The details are covered in the aforementioned section of the interim report filed on April 28, 1997.
    Keywords: Computer Programming and Software
    Type: NASA-CR-205332 , NAS 1.26:205332
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.
    Keywords: Computer Programming and Software
    Type: Paper-11 , HBCUs Research Conference Agenda and Abstracts; 19; NASA-CP-10189
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...