ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-05-21
    Description: Bile acids regulate the transcription of genes that control cholesterol homeostasis through molecular mechanisms that are poorly understood. Physiological concentrations of free and conjugated chenodeoxycholic acid, lithocholic acid, and deoxycholic acid activated the farnesoid X receptor (FXR; NR1H4), an orphan nuclear receptor. As ligands, these bile acids and their conjugates modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1. These results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parks, D J -- Blanchard, S G -- Bledsoe, R K -- Chandra, G -- Consler, T G -- Kliewer, S A -- Stimmel, J B -- Willson, T M -- Zavacki, A M -- Moore, D D -- Lehmann, J M -- F32 DK09793/DK/NIDDK NIH HHS/ -- R01 DK53366/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1365-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biochemistry, Glaxo Wellcome Research and Development, Research Triangle Park NC, 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/chemistry/*metabolism/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism/pharmacology ; Cholesterol/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Deoxycholic Acid/metabolism/pharmacology ; Histone Acetyltransferases ; Homeostasis ; Humans ; Ligands ; Lithocholic Acid/metabolism/pharmacology ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Structure-Activity Relationship ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-10-12
    Description: We have identified the xenobiotic receptor CAR (constitutive androstane receptor) as a key regulator of acetaminophen metabolism and hepatotoxicity. Known CAR activators as well as high doses of acetaminophen induced expression of three acetaminophen-metabolizing enzymes in wild-type but not in CAR null mice, and the CAR null mice were resistant to acetaminophen toxicity. Inhibition of CAR activity by administration of the inverse agonist ligand androstanol 1 hour after acetaminophen treatment blocked hepatotoxicity in wild type but not in CAR null mice. These results suggest an innovative therapeutic approach for treating the adverse effects of acetaminophen and potentially other hepatotoxic agents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jun -- Huang, Wendong -- Chua, Steven S -- Wei, Ping -- Moore, David D -- R01 DK46546/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 11;298(5592):422-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12376703" target="_blank"〉PubMed〈/a〉
    Keywords: Acetaminophen/metabolism/*toxicity ; Acetylcysteine/pharmacology ; Alanine Transaminase/blood ; Analgesics, Non-Narcotic/metabolism/toxicity ; Androstanols/pharmacology ; Animals ; Aryl Hydrocarbon Hydroxylases/genetics/metabolism ; Benzoquinones/metabolism ; Cytochrome P-450 CYP1A2/genetics/metabolism ; Cytochrome P-450 CYP2E1/genetics/metabolism ; Cytochrome P-450 CYP3A ; Cytochrome P-450 Enzyme System/genetics/metabolism ; Glutathione/metabolism ; Glutathione S-Transferase pi ; Glutathione Transferase/genetics/metabolism ; Humans ; Imines/metabolism ; Isoenzymes/genetics/metabolism ; Liver/*drug effects/*metabolism/pathology ; Mice ; Mice, Knockout ; Mice, Transgenic ; Oxidoreductases, N-Demethylating/genetics/metabolism ; Phenobarbital/pharmacology ; Pyridines/pharmacology ; RNA, Messenger/genetics/metabolism ; Receptors, Cytoplasmic and Nuclear/agonists/antagonists & ; inhibitors/genetics/*metabolism ; Time Factors ; Transcription Factors/agonists/antagonists & inhibitors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-05-04
    Description: Extracts of the resin of the guggul tree (Commiphora mukul) lower LDL (low-density lipoprotein) cholesterol levels in humans. The plant sterol guggulsterone [4,17(20)-pregnadiene-3,16-dione] is the active agent in this extract. We show that guggulsterone is a highly efficacious antagonist of the farnesoid X receptor (FXR), a nuclear hormone receptor that is activated by bile acids. Guggulsterone treatment decreases hepatic cholesterol in wild-type mice fed a high-cholesterol diet but is not effective in FXR-null mice. Thus, we propose that inhibition of FXR activation is the basis for the cholesterol-lowering activity of guggulsterone. Other natural products with specific biologic effects may modulate the activity of FXR or other relatively promiscuous nuclear hormone receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Urizar, Nancy L -- Liverman, Amy B -- Dodds, D'Nette T -- Silva, Frank Valentin -- Ordentlich, Peter -- Yan, Yingzhuo -- Gonzalez, Frank J -- Heyman, Richard A -- Mangelsdorf, David J -- Moore, David D -- New York, N.Y. -- Science. 2002 May 31;296(5573):1703-6. Epub 2002 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11988537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caco-2 Cells ; Carrier Proteins/genetics/metabolism ; Cells, Cultured ; Chenodeoxycholic Acid/pharmacology ; Cholesterol/*metabolism ; Cholesterol, Dietary/administration & dosage ; DNA/metabolism ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Hepatocytes/metabolism ; Histone Acetyltransferases ; Humans ; *Hydroxysteroid Dehydrogenases ; Hypolipidemic Agents/metabolism/*pharmacology ; Ligands ; Liver/metabolism ; *Membrane Glycoproteins ; Mice ; Nuclear Receptor Coactivator 1 ; Pregnenediones/metabolism/*pharmacology ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors/genetics/metabolism ; Receptors, Steroid/antagonists & inhibitors/metabolism ; Transcription Factors/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Transcriptional Activation/drug effects ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-02
    Description: When two different mammalian cell types are fused to generate a stable hybrid cell line, genes that are active in only one of the parents are frequently shut off, a phenomenon called extinction. In this study two distinct, complementary mechanisms for such extinction of growth hormone gene expression were identified. In hybrids formed by fusing fibroblasts to pituitary cells, pituitary-specific proteins that bind to the growth hormone promoter were absent. In addition, a negative regulatory element located near the rat growth hormone promoter was specifically activated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tripputi, P -- Guerin, S L -- Moore, D D -- New York, N.Y. -- Science. 1988 Sep 2;241(4870):1205-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2842865" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/genetics ; Animals ; Avian Sarcoma Viruses/genetics ; Chloramphenicol O-Acetyltransferase ; Enhancer Elements, Genetic ; Fibroblasts/metabolism ; *Gene Expression Regulation ; Growth Hormone/*genetics ; Herpesviridae/genetics ; Hybrid Cells/*metabolism ; Hypoxanthine Phosphoribosyltransferase/genetics ; L Cells (Cell Line) ; Mice ; Pituitary Gland/metabolism ; Plasmids ; Promoter Regions, Genetic ; Rats ; Thymidine Kinase/genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-04-07
    Description: Three cellular homologs of the v-erbA oncogene were previously identified in the rat; two of them encode high affinity receptors for the thyroid hormone triiodothyronine (T3). A rat complementary DNA clone encoding a T3 receptor form of the ErbA protein, called r-ErbA beta-2, was isolated. The r-ErbA beta-2 protein differs at its amino terminus from the previously described rat protein encoded by c-erbA beta and referred to as r-ErbA beta-1. Unlike the other members of the c-erbA proto-oncogene family, which have a wide tissue distribution, r-erbA beta-2 appears to be expressed only in the anterior pituitary gland. In addition, thyroid hormone downregulates r-erbA beta-2 messenger RNA but not r-erbA beta-1 messenger RNA in a pituitary tumor-derived cell line. The presence of a pituitary-specific form of the thyroid hormone receptor that may be selectively regulated by thyroid hormone could be important for the differential regulation of gene expression by T3 in the pituitary gland.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hodin, R A -- Lazar, M A -- Wintman, B I -- Darling, D S -- Koenig, R J -- Larsen, P R -- Moore, D D -- Chin, W W -- New York, N.Y. -- Science. 1989 Apr 7;244(4900):76-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Brigham and Women's Hospital, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2539642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cloning, Molecular ; DNA/isolation & purification ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Organ Specificity ; Pituitary Gland, Anterior/*metabolism ; Proto-Oncogene Proteins/genetics/*isolation & purification ; Rats ; Receptors, Thyroid Hormone/genetics/*isolation & purification ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, David D -- England -- Nature. 2013 Oct 24;502(7472):454-5. doi: 10.1038/502454a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24153294" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Circadian Rhythm ; Fatty Acids/*metabolism ; Lipids/*blood ; *Lipogenesis ; Liver/*metabolism ; Male
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-11
    Description: Autophagy is an evolutionarily conserved catabolic process that recycles nutrients upon starvation and maintains cellular energy homeostasis. Its acute regulation by nutrient-sensing signalling pathways is well described, but its longer-term transcriptional regulation is not. The nuclear receptors peroxisome proliferator-activated receptor-alpha (PPARalpha) and farnesoid X receptor (FXR) are activated in the fasted and fed liver, respectively. Here we show that both PPARalpha and FXR regulate hepatic autophagy in mice. Pharmacological activation of PPARalpha reverses the normal suppression of autophagy in the fed state, inducing autophagic lipid degradation, or lipophagy. This response is lost in PPARalpha knockout (Ppara(-/-), also known as Nr1c1(-/-)) mice, which are partially defective in the induction of autophagy by fasting. Pharmacological activation of the bile acid receptor FXR strongly suppresses the induction of autophagy in the fasting state, and this response is absent in FXR knockout (Fxr(-/-), also known as Nr1h4(-/-)) mice, which show a partial defect in suppression of hepatic autophagy in the fed state. PPARalpha and FXR compete for binding to shared sites in autophagic gene promoters, with opposite transcriptional outputs. These results reveal complementary, interlocking mechanisms for regulation of autophagy by nutrient status.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267857/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267857/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jae Man -- Wagner, Martin -- Xiao, Rui -- Kim, Kang Ho -- Feng, Dan -- Lazar, Mitchell A -- Moore, David D -- DK43806/DK/NIDDK NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30DX56338-05A2/PHS HHS/ -- P39CA125123-04/CA/NCI NIH HHS/ -- R01 DK049780/DK/NIDDK NIH HHS/ -- R01 DK49780/DK/NIDDK NIH HHS/ -- R37 DK043806/DK/NIDDK NIH HHS/ -- S10RR027783-01A1/RR/NCRR NIH HHS/ -- U54HD-07495-39/HD/NICHD NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):112-5. doi: 10.1038/nature13961. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Division of Endocrinology, Diabetes, and Metabolism and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383539" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics/*physiology ; Cell Line ; Cells, Cultured ; Fasting/physiology ; Gene Expression Regulation ; Hepatocytes/metabolism ; Liver/cytology/*metabolism/ultrastructure ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microtubule-Associated Proteins/genetics/metabolism ; PPAR alpha ; Receptors, Cytoplasmic and Nuclear/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-05-27
    Description: Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine (DLPC)) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver-specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signalling pathway that regulates bile acid metabolism and glucose homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150801/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150801/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jae Man -- Lee, Yoon Kwang -- Mamrosh, Jennifer L -- Busby, Scott A -- Griffin, Patrick R -- Pathak, Manish C -- Ortlund, Eric A -- Moore, David D -- DK-079638/DK/NIDDK NIH HHS/ -- R01 CA134873/CA/NCI NIH HHS/ -- R01 DK068804/DK/NIDDK NIH HHS/ -- R01 DK083572/DK/NIDDK NIH HHS/ -- R01 DK083572-02/DK/NIDDK NIH HHS/ -- T32 DK007696/DK/NIDDK NIH HHS/ -- U54 MH084512/MH/NIMH NIH HHS/ -- England -- Nature. 2011 May 25;474(7352):506-10. doi: 10.1038/nature10111.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21614002" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/biosynthesis/metabolism/pharmacology ; Blood Glucose/metabolism ; Cell Line ; Disease Models, Animal ; Fatty Liver/drug therapy/enzymology ; HeLa Cells ; Homeostasis/drug effects ; Humans ; Hypoglycemic Agents/pharmacology ; Insulin Resistance/physiology ; Ligands ; Lipogenesis/drug effects ; Liver/drug effects/enzymology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Phosphatidylcholines/*metabolism/pharmacology ; Protein Binding ; Receptors, Cytoplasmic and Nuclear/agonists/deficiency/genetics/*metabolism ; Signal Transduction/drug effects ; Triglycerides/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-05-31
    Description: SHP is an orphan member of the nuclear hormone receptor superfamily that contains the dimerization and ligand-binding domain found in other family members but lacks the conserved DNA binding domain. In the yeast two-hybrid system, SHP interacted with several conventional and orphan members of the receptor superfamily, including retinoid receptors, the thyroid hormone receptor, and the orphan receptor MB67. SHP also interacted directly with these receptors in vitro. In mammalian cells, SHP specifically inhibited transactivation by the superfamily members with which it interacted. These results suggest that SHP functions as a negative regulator of receptor-dependent signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seol, W -- Choi, H S -- Moore, D D -- DK46546/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 May 31;272(5266):1336-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650544" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; DAX-1 Orphan Nuclear Receptor ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Humans ; Mice ; Molecular Sequence Data ; Receptors, Cytoplasmic and Nuclear/chemistry/*metabolism ; Receptors, Retinoic Acid/chemistry/metabolism ; Receptors, Thyroid Hormone/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; *Repressor Proteins ; Retinoid X Receptors ; Signal Transduction ; Transcription Factors/chemistry/metabolism ; Transcriptional Activation/drug effects ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-10-30
    Description: In a screen for transcriptional regulators that control differentiation into the T cell lineage, a complementary DNA was isolated encoding a zinc finger protein (Ikaros) related to the Drosophila gap protein Hunchback. The Ikaros protein binds to and activates the enhancer of a gene encoding an early T cell differentiation antigen, CD3 delta. During development, Ikaros messenger RNA was first detected in the mouse fetal liver and the embryonic thymus when hematopoietic and lymphoid progenitors initially colonize these organs; no expression was observed in the spleen or the bone marrow. The pattern of Ikaros gene expression and its ability to stimulate CD3 delta transcription support the model that Ikaros functions in the specification and maturation of the T lymphocyte.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Georgopoulos, K -- Moore, D D -- Derfler, B -- New York, N.Y. -- Science. 1992 Oct 30;258(5083):808-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Charlestown 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439790" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD3/genetics ; Base Sequence ; Cell Differentiation/physiology ; DNA/chemistry/metabolism ; *DNA-Binding Proteins ; Drosophila/chemistry ; *Drosophila Proteins ; Enhancer Elements, Genetic ; Gene Expression ; Ikaros Transcription Factor ; Juvenile Hormones/chemistry ; Liver/chemistry/embryology ; Mice ; Molecular Sequence Data ; RNA, Messenger/analysis ; Sequence Homology, Amino Acid ; T-Lymphocytes/cytology/*physiology ; Thymus Gland/chemistry/embryology ; Tissue Distribution ; Transcription Factors/chemistry/genetics/*physiology ; Transcription, Genetic ; Zinc Fingers/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...