ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-12-18
    Description: Prokaryotic viruses have evolved various mechanisms to transport their genomes across bacterial cell walls. Many bacteriophages use a tail to perform this function, whereas tail-less phages rely on host organelles. However, the tail-less, icosahedral, single-stranded DNA PhiX174-like coliphages do not fall into these well-defined infection processes. For these phages, DNA delivery requires a DNA pilot protein. Here we show that the PhiX174 pilot protein H oligomerizes to form a tube whose function is most probably to deliver the DNA genome across the host's periplasmic space to the cytoplasm. The 2.4 A resolution crystal structure of the in vitro assembled H protein's central domain consists of a 170 A-long alpha-helical barrel. The tube is constructed of ten alpha-helices with their amino termini arrayed in a right-handed super-helical coiled-coil and their carboxy termini arrayed in a left-handed super-helical coiled-coil. Genetic and biochemical studies demonstrate that the tube is essential for infectivity but does not affect in vivo virus assembly. Cryo-electron tomograms show that tubes span the periplasmic space and are present while the genome is being delivered into the host cell's cytoplasm. Both ends of the H protein contain transmembrane domains, which anchor the assembled tubes into the inner and outer cell membranes. The central channel of the H-protein tube is lined with amide and guanidinium side chains. This may be a general property of viral DNA conduits and is likely to be critical for efficient genome translocation into the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Lei -- Young, Lindsey N -- Zhang, Xinzheng -- Boudko, Sergei P -- Fokine, Andrei -- Zbornik, Erica -- Roznowski, Aaron P -- Molineux, Ian J -- Rossmann, Michael G -- Fane, Bentley A -- England -- Nature. 2014 Jan 16;505(7483):432-5. doi: 10.1038/nature12816. Epub 2013 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA [2]. ; 1] School of Plant Sciences and the BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA [2]. ; 1] Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA [2] The Research Department, Shriner's Hospital for Children, Portland, Oregon 97239, USA. ; Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA. ; School of Plant Sciences and the BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA. ; Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336205" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage phi X 174/*chemistry/*metabolism/ultrastructure ; Biological Transport ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cytoplasm/metabolism/ultrastructure/virology ; DNA, Viral/*metabolism/ultrastructure ; Escherichia coli/cytology/ultrastructure/*virology ; Genome, Viral ; Models, Molecular ; Periplasm/metabolism/ultrastructure ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Viral Proteins/chemistry/metabolism/ultrastructure ; *Virus Assembly
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-22
    Description: Shared host cells can serve as melting pots for viral genomes, giving many phylogenies a web-like appearance due to horizontal gene transfer. However, not all virus families exhibit web-like phylogenies. Microviruses form three distinct clades, represented by X174, G4, and α3. Here, we investigate protein-based barriers to horizontal gene transfer between clades. We transferred gene G, which encodes a structural protein, between X174 and G4, and monitored the evolutionary recovery of the resulting chimeras. In both cases, particle assembly was the major barrier after gene transfer. The G4XG chimera displayed a temperature-sensitive assembly defect that could easily be corrected through single mutations that promote productive assembly. Gene transfer in the other direction was more problematic. The initial XG4G chimera required an exogenous supply of both the X174 major spike G and DNA pilot H proteins. Elevated DNA pilot protein levels may be required to compensate for off-pathway reactions that may have become thermodynamically and/or kinetically favored when the foreign spike protein was present. After three targeted genetic selections, the foreign spike protein was productively integrated into the X174 background. The first adaption involved a global decrease in gene expression. This was followed by modifications affecting key protein–protein interactions that govern assembly. Finally, gene expression was re-elevated. Although the first selection suppresses nonproductive reactions, subsequent selections promote productive assembly and ultimately viability. However, viable chimeric strains exhibited reduced fitness compared with wild-type. This chimera’s path to recovery may partially explain how unusual recombinant viruses could persist long enough to naturally emerge.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-05-24
    Description: Single-stranded DNA(ssDNA) viral life cycles must balance double-stranded DNA (dsDNA) and ssDNA biosynthesis. Previously published in vitro results suggest that microvirus C and host cell SSB proteins play antagonistic roles to achieve this balance. To investigate this in vivo, microvirus DNA replication was characterized in cells expressing cloned C or ssb genes, which would presumably alter the C:SSB protein ratios. Representatives of each microvirus clade (X174, G4, and α3) were used in these studies. α3 DNA replication was significantly more complex. Results suggested that the recognized α3 C gene (C S : small) is one of two C genes. A larger 5' extended gene could be translated from an upstream GTG start codon (C B : big). Wild-type α3 acquired resistance to elevated SSB levels by mutations that exclusively frameshifted the C B reading frame, whereas mutations in the origin of replication conferred resistance to elevated C protein levels. Expression of either the cloned C B or C S gene complemented am(C) mutants, demonstrating functional redundancy. When the C S start codon was eliminated, strains were only viable if an additional amber mutation was placed in gene C and propagated in an informational suppressing host. Thus, C B protein likely reaches toxic levels in the absence of C S translation. This phenomenon may have driven the evolution of the C S gene within the larger C B gene and could constitute a unique mechanism of regulation. Furthermore, cross-complementation data suggested that interactions between the α3 C and other viral proteins have evolved enough specificity to biochemically isolate its DNA replication from G4 and X174.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-04
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...