ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2013-01-26
    Description: Background: Low levels of serum adiponectin have been linked to central obesity, insulin resistance, metabolic syndrome, and type 2 diabetes. Variants in ADIPOQ, the gene encoding adiponectin, have been shown to influence serum adiponectin concentration, and along with variants in the adiponectin receptors (ADIPOR1 and ADIPOR2) have been implicated in metabolic syndrome and type 2 diabetes. This study aimed to comprehensively investigate the association of common variants in ADIPOQ, ADIPOR1 and ADIPOR2 with serum adiponectin and insulin resistance syndromes in a large cohort of European-Australian individuals. Methods: Sixty-four tagging single nucleotide polymorphisms in ADIPOQ, ADIPOR1 and ADIPOR2 were genotyped in two general population cohorts consisting of 2,355 subjects, and one cohort of 967 subjects with type 2 diabetes. The association of tagSNPs with outcomes were evaluated using linear or logistic modelling. Meta-analysis of the three cohorts was performed by random-effects modelling. Results: Meta-analysis revealed nine genotyped tagSNPs in ADIPOQ significantly associated with serum adiponectin across all cohorts after adjustment for age, gender and BMI, including rs10937273, rs12637534, rs1648707, rs16861209, rs822395, rs17366568, rs3774261, rs6444175 and rs17373414. The results of haplotype-based analyses were also consistent. Overall, the variants in the ADIPOQ gene explained
    Electronic ISSN: 1471-2350
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-30
    Description: Background: Cylindrospermopsis raciborskii is an invasive filamentous freshwater cyanobacterium, some strains of which produce toxins. Sporadic toxicity may be the result of gene deletion events, the horizontal transfer of toxin biosynthesis gene clusters, or other genomic variables, yet the evolutionary drivers for cyanotoxin production remain a mystery. Through examining the genomes of toxic and non-toxic strains of C. raciborskii, we hoped to gain a better understanding of the degree of similarity between these strains of common geographical origin, and what the primary differences between these strains might be. Additionally, we hoped to ascertain why some cyanobacteria possess the cylindrospermopsin biosynthesis (cyr) gene cluster and produce toxin, while others do not. It has been hypothesised that toxicity or lack thereof might confer a selective advantage to cyanobacteria under certain environmental conditions. Results: In order to examine the fundamental differences between toxic and non-toxic C. raciborskii strains, we sequenced the genomes of two closely related isolates, CS-506 (CYN+) and CS-509 (CYN-) sourced from different lakes in tropical Queensland, Australia. These genomes were then compared to a third (reference) genome from C. raciborskii CS-505 (CYN+). Genome sizes were similar across all three strains and their G + C contents were almost identical. At least 2,767 genes were shared among all three strains, including the taxonomically important rpoc1, ssuRNA, lsuRNA, cpcA, cpcB, nifB and nifH, which exhibited 99.8-100% nucleotide identity. Strains CS-506 and CS-509 contained at least 176 and 101 strain-specific (or non-homologous) genes, respectively, most of which were associated with DNA repair and modification, nutrient uptake and transport, or adaptive measures such as osmoregulation. However, the only significant genetic difference observed between the two strains was the presence or absence of the cylindrospermopsin biosynthesis gene cluster. Interestingly, we also identified a cryptic secondary metabolite gene cluster in strain CS-509 (CYN-) and a second cryptic cluster common to CS-509 and the reference strain, CS-505 (CYN+). Conclusions: Our results confirm that the most important factor contributing to toxicity in C. raciborskii is the presence or absence of the cyr gene cluster. We did not identify any other distally encoded genes or gene clusters that correlate with CYN production. The fact that the additional genomic differences between toxic and non-toxic strains were primarily associated with stress and adaptation genes suggests that CYN production may be linked to these physiological processes.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...