ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2014-04-30
    Description: Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light-sensing kinases that control diverse cellular functions in plants, bacteria and fungi. Bacterial phytochromes consist of a photosensory core and a carboxy-terminal regulatory domain. Structures of photosensory cores are reported in the resting state and conformational responses to light activation have been proposed in the vicinity of the chromophore. However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here we report crystal and solution structures of the resting and activated states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures show an open and closed form of the dimeric protein for the activated and resting states, respectively. This nanometre-scale rearrangement is controlled by refolding of an evolutionarily conserved 'tongue', which is in contact with the chromophore. The findings reveal an unusual mechanism in which atomic-scale conformational changes around the chromophore are first amplified into an angstrom-scale distance change in the tongue, and further grow into a nanometre-scale conformational signal. The structural mechanism is a blueprint for understanding how phytochromes connect to the cellular signalling network.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015848/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015848/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takala, Heikki -- Bjorling, Alexander -- Berntsson, Oskar -- Lehtivuori, Heli -- Niebling, Stephan -- Hoernke, Maria -- Kosheleva, Irina -- Henning, Robert -- Menzel, Andreas -- Ihalainen, Janne A -- Westenhoff, Sebastian -- 1R24GM111072/GM/NIGMS NIH HHS/ -- 279944/European Research Council/International -- R24 GM111072/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 May 8;509(7499):245-8. doi: 10.1038/nature13310. Epub 2014 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Nanoscience Center, Department of Biological and Environmental Science, University of Jyvaskyla, 40014 Jyvaskyla, Finland [2] Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden [3]. ; 1] Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden [2]. ; Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden. ; Nanoscience Center, Department of Biological and Environmental Science, University of Jyvaskyla, 40014 Jyvaskyla, Finland. ; Center for Advanced Radiation Sources, The University of Chicago, Illinois 60637, USA. ; Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24776794" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism/radiation effects ; Binding Sites ; Crystallography, X-Ray ; Deinococcus/*chemistry ; *Light Signal Transduction/radiation effects ; Models, Molecular ; Phytochrome/chemistry/metabolism/radiation effects ; Protein Conformation/radiation effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-06
    Description: Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tenboer, Jason -- Basu, Shibom -- Zatsepin, Nadia -- Pande, Kanupriya -- Milathianaki, Despina -- Frank, Matthias -- Hunter, Mark -- Boutet, Sebastien -- Williams, Garth J -- Koglin, Jason E -- Oberthuer, Dominik -- Heymann, Michael -- Kupitz, Christopher -- Conrad, Chelsie -- Coe, Jesse -- Roy-Chowdhury, Shatabdi -- Weierstall, Uwe -- James, Daniel -- Wang, Dingjie -- Grant, Thomas -- Barty, Anton -- Yefanov, Oleksandr -- Scales, Jennifer -- Gati, Cornelius -- Seuring, Carolin -- Srajer, Vukica -- Henning, Robert -- Schwander, Peter -- Fromme, Raimund -- Ourmazd, Abbas -- Moffat, Keith -- Van Thor, Jasper J -- Spence, John C H -- Fromme, Petra -- Chapman, Henry N -- Schmidt, Marius -- P41 GM103543/GM/NIGMS NIH HHS/ -- R01GM095583/GM/NIGMS NIH HHS/ -- R24 GM111072/GM/NIGMS NIH HHS/ -- R24GM111072/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1242-6. doi: 10.1126/science.1259357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physics Department, University of Wisconsin, Milwaukee, WI 53211, USA. ; Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA. ; Department of Physics, Arizona State University, Tempe, AZ 85287, USA. ; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA. ; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. ; Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany. ; Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Hauptman-Woodward Institute, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA. ; Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany. Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. ; Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA. ; Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA. ; Physics Department, University of Wisconsin, Milwaukee, WI 53211, USA. m-schmidt@uwm.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477465" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/*ultrastructure ; Crystallography, X-Ray/*methods ; Photoreceptors, Microbial/chemistry/*ultrastructure ; Protein Conformation ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-07
    Description: A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes after photon absorption. The initial step is often the photoisomerization of a conjugated chromophore. Isomerization occurs on ultrafast time scales and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans-to-cis isomerization of the chromophore in photoactive yellow protein. Femtosecond hard x-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on photoactive yellow protein microcrystals over a time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pande, Kanupriya -- Hutchison, Christopher D M -- Groenhof, Gerrit -- Aquila, Andy -- Robinson, Josef S -- Tenboer, Jason -- Basu, Shibom -- Boutet, Sebastien -- DePonte, Daniel P -- Liang, Mengning -- White, Thomas A -- Zatsepin, Nadia A -- Yefanov, Oleksandr -- Morozov, Dmitry -- Oberthuer, Dominik -- Gati, Cornelius -- Subramanian, Ganesh -- James, Daniel -- Zhao, Yun -- Koralek, Jake -- Brayshaw, Jennifer -- Kupitz, Christopher -- Conrad, Chelsie -- Roy-Chowdhury, Shatabdi -- Coe, Jesse D -- Metz, Markus -- Xavier, Paulraj Lourdu -- Grant, Thomas D -- Koglin, Jason E -- Ketawala, Gihan -- Fromme, Raimund -- Srajer, Vukica -- Henning, Robert -- Spence, John C H -- Ourmazd, Abbas -- Schwander, Peter -- Weierstall, Uwe -- Frank, Matthias -- Fromme, Petra -- Barty, Anton -- Chapman, Henry N -- Moffat, Keith -- van Thor, Jasper J -- Schmidt, Marius -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01EY024363/EY/NEI NIH HHS/ -- R01GM095583/GM/NIGMS NIH HHS/ -- R24GM111072/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 May 6;352(6286):725-9. doi: 10.1126/science.aad5081. Epub 2016 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany. ; Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London SW7 2AZ, UK. ; Nanoscience Center and Department of Chemistry, University of Jyvaskyla, Post Office Box 35, 40014 Jyvaskyla, Finland. ; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA. ; Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. ; School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA. ; Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany. ; Department of Physics, Arizona State University, Tempe, AZ 85287, USA. ; Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany. IMPRS-UFAST, Max Planck Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany. ; Hauptman-Woodward Institute, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA. ; Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. ; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. ; Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany. Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. ; Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27151871" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-22
    Description: Author(s): S. MacMullin, M. Boswell, M. Devlin, S. R. Elliott, N. Fotiades, V. E. Guiseppe, R. Henning, T. Kawano, B. H. LaRoque, R. O. Nelson, and J. M. O'Donnell Background: Neutron-induced backgrounds are a significant concern for experiments that require extremely low levels of radioactive backgrounds such as direct dark matter searches and neutrinoless double- β decay experiments. Unmeasured neutron scattering cross sections are often accounted for incorre... [Phys. Rev. C 85, 064614] Published Thu Jun 21, 2012
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-22
    Description: Author(s): S. MacMullin, M. Kidd, R. Henning, W. Tornow, C. R. Howell, and M. Brown Background: The most significant source of background in direct dark matter searches are neutrons that scatter elastically from nuclei in the detector's sensitive volume. Experimental data for the elastic scattering cross section of neutrons from argon and neon, which are target materials of interes... [Phys. Rev. C 87, 054613] Published Tue May 21, 2013
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2016-12-04
    Description: We report 13 high-precision light curves of eight transits of the exoplanet WASP-52 b, obtained by using four medium-class telescopes, through different filters, and adopting the defocussing technique. One transit was recorded simultaneously from two different observatories and another one from the same site but with two different instruments, including a multiband camera. Anomalies were clearly detected in five light curves and modelled as star-spots occulted by the planet during the transit events. We fitted the clean light curves with the jktebop code, and those with the anomalies with the prism+gemc codes in order to simultaneously model the photometric parameters of the transits and the position, size and contrast of each star-spot. We used these new light curves and some from the literature to revise the physical properties of the WASP-52 system. Star-spots with similar characteristics were detected in four transits over a period of 43 d. In the hypothesis that we are dealing with the same star-spot, periodically occulted by the transiting planet, we estimated the projected orbital obliquity of WASP-52 b to be  = 3 $_{.}^{\circ}$ 8 ± 8 $_{.}^{\circ}$ 4. We also determined the true orbital obliquity,  = 20° ± 50°, which is, although very uncertain, the first measurement of purely from star-spot crossings. We finally assembled an optical transmission spectrum of the planet and searched for variations of its radius as a function of wavelength. Our analysis suggests a flat transmission spectrum within the experimental uncertainties.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-11-03
    Description: Pink-beam serial crystallography Pink-beam serial crystallography, Published online: 03 November 2017; doi:10.1038/s41467-017-01417-3 NatureArticleSnippet(type=short-summary, markup= Serial X-ray crystallography (SX) is used for data collection at X-ray Free Electron Lasers. Here the authors show that a polychromatic “pink” synchrotron X-ray beam can be used for SX, which is useful when crystal supply is limited and will allow time-resolved measurements at synchrotron sources in the future. , isJats=true)
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-02
    Description: We present 17 high-precision light curves of five transits of the planet Qatar-2 b, obtained from four defocused 2 m-class telescopes. Three of the transits were observed simultaneously in the Sloan g ' r ' i ' z ' passbands using the seven-beam Gamma Ray Burst Optical and Near-Infrared Detector imager on the MPG/ESO 2.2-m telescope. A fourth was observed simultaneously in Gunn grz using the Centro Astronómico Hispano Alemán 2.2-m telescope with Bonn University Simultaneous Camera, and in r using the Cassini 1.52-m telescope. Every light curve shows small anomalies due to the passage of the planetary shadow over a cool spot on the surface of the host star. We fit the light curves with the prism+gemc model to obtain the photometric parameters of the system and the position, size and contrast of each spot. We use these photometric parameters and published spectroscopic measurements to obtain the physical properties of the system to high precision, finding a larger radius and lower density for both star and planet than previously thought. By tracking the change in position of one star-spot between two transit observations, we measure the orbital obliquity of Qatar-2 b to be  = 4 $_{.}^{\circ}$ 3 ± 4 $_{.}^{\circ}$ 5, strongly indicating an alignment of the stellar spin with the orbit of the planet. We calculate the rotation period and velocity of the cool host star to be 11.5 ± 0.2 d and 3.28 ± 0.04 km s –1 at a colatitude of 74°. We assemble the planet's transmission spectrum over the 386–976 nm wavelength range and search for variations of the measured radius of Qatar-2 b as a function of wavelength. Our analysis highlights a possible H 2 /He Rayleigh scattering in the blue.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-12-22
    Description: Author(s): S. MacMullin, M. Boswell, M. Devlin, S. R. Elliott, N. Fotiades, V. E. Guiseppe, R. Henning, T. Kawano, B. H. LaRoque, R. O. Nelson, and J. M. O'Donnell Background: Neutron-induced reactions are a significant concern for experiments that require extremely low levels of radioactive backgrounds. Measurements of γ -ray production cross sections over a wide energy range help to predict and identify neutron backgrounds in these experiments. Purpose: The pu... [Phys. Rev. C 86, 067601] Published Fri Dec 21, 2012
    Keywords: Nuclear Reactions
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...