ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Computing in Science & Engineering, Edmonton, Conseil de l'Europe, vol. 106, no. May/June, pp. 22-33, pp. B10410, (ISSN: 1340-4202)
    Publication Date: 2000
    Keywords: Plate tectonics ; ConvolutionE ; Modelling ; GeodesyY
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Pageoph, Edmonton, Conseil de l'Europe, vol. 159, no. 10, pp. 2335-2356, pp. B10410, (ISSN: 1340-4202)
    Publication Date: 2002
    Keywords: Modelling ; ConvolutionE ; Inelastic ; Rheology ; Finite Element Method ; Lagrangian ; GeodesyY ; Fracture ; Two-dimensional ; PAG ; Muehlhaus ; Muhlhaus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Earth planet. Sci. Lett., Kunming, China, D. Reidel Publishing Company, vol. 236, no. 1-2, pp. 120-134, pp. 1058, (ISSN: 1340-4202)
    Publication Date: 2005
    Keywords: Tectonics ; CRUST ; Rheology ; Inelastic ; viscosity ; Layers ; EPSL
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-04-03
    Description: [1]  We present numerical subduction models to investigate overriding plate deformation at subduction zones. All models show forearc shortening, resulting predominantly from shear stresses at the subduction zone interface and opposite-sense mantle shear stresses at the base of the forearc lithosphere. Models dominated by backarc extension show that it results from trench-normal positive velocity gradients in the mantle below the overriding plate. Such gradients result from toroidal mantle flow induced by slab rollback, with velocities below the leading part of the backarc faster than the overriding plate velocity. The velocity gradients induce basal shear stresses that increase trenchward and cause trenchward overriding plate motion at a velocity ( v OP⊥ ) whose spatial average is below the trench retreat velocity ( v T⊥ ). The combination of basal shear stresses and average v OP⊥ 〈 v T⊥ causes trench-normal deviatoric tension in the backarc and backarc extension. Models dominated by backarc shortening show that it results from a relatively immobile subduction hinge and trenchward overriding plate motion driven by poloidal mantle flow. The poloidal mantle flow is induced by downdip slab sinking and causes the average v OP⊥ 〉 v T⊥ . This results in trench-normal deviatoric compression and shortening in the leading part of the overriding plate as it collides with the subduction hinge. Ultimately, the geodynamic models demonstrate that backarc extension is favored for narrow slabs and near lateral slab edges, and is driven by rollback induced toroidal mantle flow, while backarc shortening is favored for the center of wide slabs, and is driven by poloidal mantle flow resulting from downdip slab motion.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-10-22
    Description: Super-continental insulation refers to an increase in mantle temperature below a supercontinent due to the heat transfer inefficiency of thick, stagnant continental lithosphere relative to thinner, subducting oceanic lithosphere. We use thermal network theory, numerical simulations, and laboratory experiments to provide tighter physical insight into this process. We isolate two end-member dynamic regimes. In the thermally well mixed regime the insulating effect of continental lithosphere can not cause a localized increase in mantle temperature due to the efficiency of lateral mixing in the mantle. In this regime the potential temperature of the entire mantle is higher than it would be without continents, the magnitude depending on the relative thickness of continental and oceanic lithosphere (i.e., the insulating effects of continental lithosphere are communicated to the entire mantle). Thermal mixing can be short circuited if subduction zones surround a supercontinent or if the convective flow pattern of the mantle becomes spatially fixed relative to a stationary supercontinent. This causes a transition to the thermal isolation regime: The potential temperature increases below a supercontinent whereas the potential temperature below oceanic domains drops such that the average temperature of the whole mantle remains constant. Transition into this regime would thus involve an increase in the suboceanic viscosity, due to local cooling, and consequently a decrease in the rate of oceanic lithosphere overturn. Transition out of this regime can involve the unleashing of flow driven by a large lateral temperature gradient, which will enhance global convective motions. Our analysis highlights that transitions between the two states, in either direction, will effect not only the mantle below a supercontinent but also the mantle below oceanic regions. This provides a larger set of predictions that can be compared to the geologic record to help determine if a hypothesized super-continental thermal effect did or did not occur on our planet.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-27
    Description: Subduction of oceanic lithosphere occurs through both trenchward subducting plate motion and trench retreat. We investigate how subducting plate velocity, trench velocity and the partitioning of these two velocity components vary for individual subduction zone segments as a function of proximity to the closest lateral slab edge (DSE). We present a global compilation for 207 trench segments from 17 active subduction zones on Earth and three-dimensional numerical models of progressive free subduction of a single oceanic plate that subducts into a stratified mantle. The results show that the subducting plate velocity is always high (≥5.1 cm/yr (models) and ≥4.2 cm/yr (nature)) and trench velocity is always low (≤2.5 cm/yr (models) and ≤1.7 cm/yr (nature)) in the center of wide subduction zones (DSE 〉 2200 km). Only in regions close to lateral slab edges (DSE 〈 1000 km), be it for narrow or wide subduction zones, can the trench velocity exceed 4 cm/yr (models) and 6 cm/yr (nature) and can the subducting plate velocity go below 4 cm/yr (models) and 2 cm/yr (nature). In general, plate velocities, trench velocities and subduction partitioning are much more variable near slab edges than in the center of wide subduction zones owing to other parameters that affect subduction kinematics. We conclude that subduction kinematics can vary considerably along individual subduction zones and that the upper bound values for trench velocity and lower bound values for subducting plate velocity and subduction partitioning at individual subduction zone segments depend critically on DSE.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: A three-dimensional model of mantle convection in which the known history of plate tectonics is imposed predicts the anomalous Cretaceous vertical motion of Australia and the present-day distinctive geochemistry and geophysics of the Australian-Antarctic Discordance. The dynamic models infer that a subducted slab associated with the long-lived Gondwanaland-Pacific converging margin passed beneath Australia during the Cretaceous, partially stagnated in the mantle transition zone, and is presently being drawn up by the Southeast Indian Ridge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gurnis -- Muller -- Moresi -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1499-504.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉M. Gurnis is at the Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA. E-mail: gurnis@caltech.edu. R. D. Muller is in the Department of Geology and Geophysics, University of Sydney, Sydney, NSW 2006, Austra.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488643" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-03-29
    Description: Subduction zones become congested when they try to consume buoyant, exotic crust. The accretionary mountain belts (orogens) that form at these convergent plate margins have been the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North American Cordilleras and southwest Pacific subduction zones. The geologic record contains abundant accretionary orogens, such as the Tasmanides, along the eastern margin of the supercontinent Gondwana, and the Altaides, which formed on the southern margin of Laurasia. In modern and ancient examples of long-lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back-arc basin development, often related to subduction rollback and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. Here we present three-dimensional dynamic models that show how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back-arc region. The complexity of the morphology and the evolution of the system are caused by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonally to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, and infer that this is a recurrent and global phenomenon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moresi, L -- Betts, P G -- Miller, M S -- Cayley, R A -- England -- Nature. 2014 Apr 10;508(7495):245-8. doi: 10.1038/nature13033. Epub 2014 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] School of Geosciences, Monash University, Clayton, Victoria 3800, Australia [2] School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia [3] School of Earth Sciences, University of Melbourne, Parkville, Victoria 3010, Australia. ; School of Geosciences, Monash University, Clayton, Victoria 3800, Australia. ; Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA. ; Geological Survey of Victoria, Melbourne, Victoria 3001, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670638" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moresi, Louis -- England -- Nature. 2013 Sep 26;501(7468):496-7. doi: 10.1038/501496a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24067708" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-07-22
    Description: Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W. These findings explain the Cenozoic slowdown of the Farallon plate and the decrease in subduction partitioning by its decreasing slab width. The change from Sevier-Laramide orogenesis to Basin and Range extension in North America is also explained by slab width; shortening occurred during wide-slab subduction and overriding-plate-driven trench retreat, whereas extension occurred during intermediate to narrow-slab subduction and slab-driven trench retreat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schellart, W P -- Stegman, D R -- Farrington, R J -- Freeman, J -- Moresi, L -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):316-9. doi: 10.1126/science.1190366.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Geosciences, Monash University, Melbourne, Victoria 3800, Australia. wouter.schellart@monash.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647465" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...