ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-03-31
    Description: The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. We have recently demonstrated the presence of about six cycling Lgr5(+) stem cells at the bottoms of small-intestinal crypts. Here we describe the establishment of long-term culture conditions under which single crypts undergo multiple crypt fission events, while simultanously generating villus-like epithelial domains in which all differentiated cell types are present. Single sorted Lgr5(+) stem cells can also initiate these cryptvillus organoids. Tracing experiments indicate that the Lgr5(+) stem-cell hierarchy is maintained in organoids. We conclude that intestinal cryptvillus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Toshiro -- Vries, Robert G -- Snippert, Hugo J -- van de Wetering, Marc -- Barker, Nick -- Stange, Daniel E -- van Es, Johan H -- Abo, Arie -- Kujala, Pekka -- Peters, Peter J -- Clevers, Hans -- England -- Nature. 2009 May 14;459(7244):262-5. doi: 10.1038/nature07935. Epub 2009 Mar 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19329995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Culture Techniques/*methods ; Cell Lineage ; Cell Separation ; Gene Expression Regulation, Developmental ; Intestines/*anatomy & histology/*cytology/metabolism ; Mesoderm/cytology/metabolism ; Mice ; Multipotent Stem Cells/cytology/metabolism ; Organoids/*cytology/growth & development/metabolism ; Paneth Cells/metabolism ; Receptors, G-Protein-Coupled/*metabolism ; Receptors, Notch/metabolism ; Regeneration ; Stem Cell Niche ; Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-30
    Description: Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain genetically and phenotypically stable. Here we utilize CRISPR/Cas9 technology for targeted gene modification of four of the most commonly mutated colorectal cancer genes (APC, P53 (also known as TP53), KRAS and SMAD4) in cultured human intestinal stem cells. Mutant organoids can be selected by removing individual growth factors from the culture medium. Quadruple mutants grow independently of all stem-cell-niche factors and tolerate the presence of the P53 stabilizer nutlin-3. Upon xenotransplantation into mice, quadruple mutants grow as tumours with features of invasive carcinoma. Finally, combined loss of APC and P53 is sufficient for the appearance of extensive aneuploidy, a hallmark of tumour progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drost, Jarno -- van Jaarsveld, Richard H -- Ponsioen, Bas -- Zimberlin, Cheryl -- van Boxtel, Ruben -- Buijs, Arjan -- Sachs, Norman -- Overmeer, Rene M -- Offerhaus, G Johan -- Begthel, Harry -- Korving, Jeroen -- van de Wetering, Marc -- Schwank, Gerald -- Logtenberg, Meike -- Cuppen, Edwin -- Snippert, Hugo J -- Medema, Jan Paul -- Kops, Geert J P L -- Clevers, Hans -- England -- Nature. 2015 May 7;521(7550):43-7. doi: 10.1038/nature14415. Epub 2015 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584CT Utrecht, The Netherlands [2] Cancer Genomics Netherlands, UMC Utrecht, 3584CG Utrecht, The Netherlands. ; 1] Cancer Genomics Netherlands, UMC Utrecht, 3584CG Utrecht, The Netherlands [2] Molecular Cancer Research, Centre for Molecular Medicine, UMC Utrecht, 3584CG, Utrecht, The Netherlands. ; 1] Cancer Genomics Netherlands, UMC Utrecht, 3584CG Utrecht, The Netherlands [2] Laboratory of Experimental Oncology and Radiobiology, Centre for Experimental Molecular Medicine, AMC, 1105AZ Amsterdam, The Netherlands. ; Department of Medical Genetics, UMC Utrecht, 3508AB Utrecht, The Netherlands. ; Department of Pathology, UMC Utrecht, 3584CX Utrecht, The Netherlands. ; 1] Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584CT Utrecht, The Netherlands [2] Cancer Genomics Netherlands, UMC Utrecht, 3584CG Utrecht, The Netherlands [3] Foundation Hubrecht Organoid Technology (HUB), 3584CT Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25924068" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-30
    Description: Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, which are small cycling cells located at crypt bottoms. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells that are known to produce bactericidal products such as lysozyme and cryptdins/defensins. Single Lgr5-expressing stem cells can be cultured to form long-lived, self-organizing crypt-villus organoids in the absence of non-epithelial niche cells. Here we find a close physical association of Lgr5 stem cells with Paneth cells in mice, both in vivo and in vitro. CD24(+) Paneth cells express EGF, TGF-alpha, Wnt3 and the Notch ligand Dll4, all essential signals for stem-cell maintenance in culture. Co-culturing of sorted stem cells with Paneth cells markedly improves organoid formation. This Paneth cell requirement can be substituted by a pulse of exogenous Wnt. Genetic removal of Paneth cells in vivo results in the concomitant loss of Lgr5 stem cells. In colon crypts, CD24(+) cells residing between Lgr5 stem cells may represent the Paneth cell equivalents. We conclude that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547360/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547360/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Toshiro -- van Es, Johan H -- Snippert, Hugo J -- Stange, Daniel E -- Vries, Robert G -- van den Born, Maaike -- Barker, Nick -- Shroyer, Noah F -- van de Wetering, Marc -- Clevers, Hans -- R01 CA142826/CA/NCI NIH HHS/ -- R01 CA142826-01/CA/NCI NIH HHS/ -- R03 DK084167/DK/NIDDK NIH HHS/ -- R03 DK084167-01/DK/NIDDK NIH HHS/ -- England -- Nature. 2011 Jan 20;469(7330):415-8. doi: 10.1038/nature09637. Epub 2010 Nov 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21113151" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD24/metabolism ; Cell Count ; Cell Proliferation ; Coculture Techniques ; Humans ; Intestines/*cytology ; Mice ; Multipotent Stem Cells/*cytology/*metabolism ; Paneth Cells/*cytology/secretion ; Receptors, G-Protein-Coupled/*metabolism ; Stem Cell Niche/*cytology/secretion ; Wnt Proteins/metabolism/secretion ; Wnt3 Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-18
    Description: The rapid turnover of the mammalian intestinal epithelium is supported by stem cells located around the base of the crypt. In addition to the Lgr5 marker, intestinal stem cells have been associated with other markers that are expressed heterogeneously within the crypt base region. Previous quantitative clonal fate analyses have led to the proposal that homeostasis occurs as the consequence of neutral competition between dividing stem cells. However, the short-term behaviour of individual Lgr5(+) cells positioned at different locations within the crypt base compartment has not been resolved. Here we establish the short-term dynamics of intestinal stem cells using the novel approach of continuous intravital imaging of Lgr5- Confetti mice. We find that Lgr5(+) cells in the upper part of the niche (termed 'border cells') can be passively displaced into the transit-amplifying domain, after the division of proximate cells, implying that the determination of stem-cell fate can be uncoupled from division. Through quantitative analysis of individual clonal lineages, we show that stem cells at the crypt base, termed 'central cells', experience a survival advantage over border stem cells. However, through the transfer of stem cells between the border and central regions, all Lgr5(+) cells are endowed with long-term self-renewal potential. These findings establish a novel paradigm for stem-cell maintenance in which a dynamically heterogeneous cell population is able to function long term as a single stem-cell pool.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964820/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964820/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ritsma, Laila -- Ellenbroek, Saskia I J -- Zomer, Anoek -- Snippert, Hugo J -- de Sauvage, Frederic J -- Simons, Benjamin D -- Clevers, Hans -- van Rheenen, Jacco -- 092096/Wellcome Trust/United Kingdom -- 098357/Wellcome Trust/United Kingdom -- 098357/Z/12/Z/Wellcome Trust/United Kingdom -- England -- Nature. 2014 Mar 20;507(7492):362-5. doi: 10.1038/nature12972. Epub 2014 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands [2]. ; Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands. ; University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands. ; Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; 1] Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK [2] The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [3] The Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24531760" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Lineage ; Cell Survival ; Clone Cells/cytology ; Female ; *Homeostasis ; Intestinal Mucosa/*cytology ; Male ; Mice ; Models, Biological ; Molecular Imaging ; Receptors, G-Protein-Coupled/genetics/metabolism ; *Single-Cell Analysis ; Stem Cells/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-03-13
    Description: Mammalian epidermis consists of three self-renewing compartments: the hair follicle, the sebaceous gland, and the interfollicular epidermis. We generated knock-in alleles of murine Lgr6, a close relative of the Lgr5 stem cell gene. Lgr6 was expressed in the earliest embryonic hair placodes. In adult hair follicles, Lgr6+ cells resided in a previously uncharacterized region directly above the follicle bulge. They expressed none of the known bulge stem cell markers. Prenatal Lgr6+ cells established the hair follicle, sebaceous gland, and interfollicular epidermis. Postnatally, Lgr6+ cells generated sebaceous gland and interfollicular epidermis, whereas contribution to hair lineages gradually diminished with age. Adult Lgr6+ cells executed long-term wound repair, including the formation of new hair follicles. We conclude that Lgr6 marks the most primitive epidermal stem cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Snippert, Hugo J -- Haegebarth, Andrea -- Kasper, Maria -- Jaks, Viljar -- van Es, Johan H -- Barker, Nick -- van de Wetering, Marc -- van den Born, Maaike -- Begthel, Harry -- Vries, Robert G -- Stange, Daniel E -- Toftgard, Rune -- Clevers, Hans -- New York, N.Y. -- Science. 2010 Mar 12;327(5971):1385-9. doi: 10.1126/science.1184733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Lineage ; Epidermis/cytology ; Gene Expression Profiling ; Gene Knock-In Techniques ; Hair/cytology/embryology/growth & development ; Hair Follicle/*cytology/embryology/growth & development ; Mice ; Mice, Nude ; Receptors, G-Protein-Coupled/*genetics/*metabolism ; Sebaceous Glands/cytology ; Signal Transduction ; Skin/*cytology ; Stem Cell Transplantation ; Stem Cells/*cytology/metabolism ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-08-03
    Description: The concept that tumors are maintained by dedicated stem cells, the so-called cancer stem cell hypothesis, has attracted great interest but remains controversial. Studying mouse models, we provide direct, functional evidence for the presence of stem cell activity within primary intestinal adenomas, a precursor to intestinal cancer. By "lineage retracing" using the multicolor Cre-reporter R26R-Confetti, we demonstrate that the crypt stem cell marker Lgr5 (leucine-rich repeat-containing heterotrimeric guanine nucleotide-binding protein-coupled receptor 5) also marks a subpopulation of adenoma cells that fuel the growth of established intestinal adenomas. These Lgr5(+) cells, which represent about 5 to 10% of the cells in the adenomas, generate additional Lgr5(+) cells as well as all other adenoma cell types. The Lgr5(+) cells are intermingled with Paneth cells near the adenoma base, a pattern reminiscent of the architecture of the normal crypt niche.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schepers, Arnout G -- Snippert, Hugo J -- Stange, Daniel E -- van den Born, Maaike -- van Es, Johan H -- van de Wetering, Marc -- Clevers, Hans -- New York, N.Y. -- Science. 2012 Aug 10;337(6095):730-5. doi: 10.1126/science.1224676. Epub 2012 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen, and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22855427" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/genetics/metabolism/*pathology ; Animals ; Biomarkers/analysis ; Cell Lineage ; Cell Transformation, Neoplastic ; Gene Expression Profiling ; Gene Knock-In Techniques ; Genes, Reporter ; Intestinal Mucosa/metabolism/pathology ; Intestinal Neoplasms/genetics/*pathology ; Mice ; Multipotent Stem Cells/pathology/physiology ; Neoplastic Stem Cells/*pathology/*physiology ; Paneth Cells/pathology ; Receptors, G-Protein-Coupled/*analysis ; Stem Cell Niche ; Tamoxifen/pharmacology ; Tumor Stem Cell Assay
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-20
    Description: Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells, Published online: 19 March 2018; doi:10.1038/s41467-018-03426-2 Wnt ligands are essential for intestinal homoeostasis and stem cell maintenance. Here, the authors show that reduction in Wnt secretion reduces the number of intestinal stem cells; this results in rapid fixation of mutated stem cells and accelerated adenoma formation due to lack of cell competition.
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...