ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-09
    Description: Ultraviolet-induced 6-4 photoproducts (6-4PP) and cyclobutane pyrimidine dimers (CPD) can be tolerated by translesion DNA polymerases (TLS Pols) at stalled replication forks or by gap-filling. Here, we investigated the involvement of Pol, Rev1 and Rev3L (Pol catalytic subunit) in the specific bypass of 6-4PP and CPD in repair-deficient XP-C human cells. We combined DNA fiber assay and novel methodologies for detection and quantification of single-stranded DNA (ssDNA) gaps on ongoing replication forks and postreplication repair (PRR) tracts in the human genome. We demonstrated that Rev3L, but not Rev1, is required for postreplicative gap-filling, while Pol and Rev1 are responsible for TLS at stalled replication forks. Moreover, specific photolyases were employed to show that in XP-C cells, CPD arrest replication forks, while 6-4PP are responsible for the generation of ssDNA gaps and PRR tracts. On the other hand, in the absence of Pol or Rev1, both types of lesion block replication forks progression. Altogether, the data directly show that, in the human genome, Pol and Rev1 bypass CPD and 6-4PP at replication forks, while only 6-4PP are also tolerated by a Pol-dependent gap-filling mechanism, independent of S phase.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-21
    Description: Planktonic organisms play crucial roles in oceanic food webs and global biogeochemical cycles. Most of our knowledge about the ecological impact of large zooplankton stems from research on abundant and robust crustaceans, and in particular copepods. A number of the other organisms that comprise planktonic communities are fragile, and therefore hard to sample and quantify, meaning that their abundances and effects on oceanic ecosystems are poorly understood. Here, using data from a worldwide in situ imaging survey of plankton larger than 600 mum, we show that a substantial part of the biomass of this size fraction consists of giant protists belonging to the Rhizaria, a super-group of mostly fragile unicellular marine organisms that includes the taxa Phaeodaria and Radiolaria (for example, orders Collodaria and Acantharia). Globally, we estimate that rhizarians in the top 200 m of world oceans represent a standing stock of 0.089 Pg carbon, equivalent to 5.2% of the total oceanic biota carbon reservoir. In the vast oligotrophic intertropical open oceans, rhizarian biomass is estimated to be equivalent to that of all other mesozooplankton (plankton in the size range 0.2-20 mm). The photosymbiotic association of many rhizarians with microalgae may be an important factor in explaining their distribution. The previously overlooked importance of these giant protists across the widest ecosystem on the planet changes our understanding of marine planktonic ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biard, Tristan -- Stemmann, Lars -- Picheral, Marc -- Mayot, Nicolas -- Vandromme, Pieter -- Hauss, Helena -- Gorsky, Gabriel -- Guidi, Lionel -- Kiko, Rainer -- Not, Fabrice -- England -- Nature. 2016 Apr 28;532(7600):504-7. doi: 10.1038/nature17652. Epub 2016 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sorbonne Universites, UPMC Universite Paris 06, CNRS, Laboratoire Adaptation et Diversite en Milieu Marin UMR7144, Station Biologique de Roscoff, 29688 Roscoff, France. ; Sorbonne Universites, UPMC Universite Paris 06, CNRS, Laboratoire d'Oceanographie de Villefranche (LOV) UMR7093, Observatoire Oceanologique, 06230 Villefranche-sur-Mer, France. ; GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27096373" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biomass ; *Biota ; Carbon/metabolism ; Carbon Sequestration ; Earth (Planet) ; Microalgae/metabolism ; *Oceans and Seas ; Photosynthesis ; Rhizaria/classification/*isolation & purification/metabolism ; Seawater/chemistry ; Symbiosis ; Zooplankton/classification/*isolation & purification/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...