ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2016-03-09
    Description: In a graying world, there is an increasing interest in correlates of aging, especially those found in early life. Leukocyte telomere length (LTL) is an emerging marker of aging at the cellular level, but little is known regarding its link with poor decision making that often entails being overly impatient....
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-21
    Description: Chronic hepatitis B virus (HBV) infection affects 240 million people worldwide and is a major risk factor for liver failure and hepatocellular carcinoma. Current antiviral therapy inhibits cytoplasmic HBV genomic replication, but is not curative because it does not directly affect nuclear HBV closed circular DNA (cccDNA), the genomic form...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-15
    Description: Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45–56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor,...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-09
    Description: Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins, which weaken the noncovalent network formed by cellulose, hemicellulose, and pectins, but the CW target of expansins has remained elusive because...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-02
    Description: The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-01-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhong, Maohua -- Fu, Tairan -- England -- Nature. 2008 Jan 3;451(7174):16. doi: 10.1038/451016b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172475" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-09
    Description: Space-like separation of entangled quantum states is a central concept in fundamental investigations of quantum mechanics and in quantum communication applications. Optical approaches are ubiquitous in the distribution of entanglement because entangled photons are easy to generate and transmit. However, extending this direct distribution beyond a range of a few hundred kilometres to a worldwide network is prohibited by losses associated with scattering, diffraction and absorption during transmission. A proposal to overcome this range limitation is the quantum repeater protocol, which involves the distribution of entangled pairs of optical modes among many quantum memories stationed along the transmission channel. To be effective, the memories must store the quantum information encoded on the optical modes for times that are long compared to the direct optical transmission time of the channel. Here we measure a decoherence rate of 8 x 10(-5) per second over 100 milliseconds, which is the time required for light transmission on a global scale. The measurements were performed on a ground-state hyperfine transition of europium ion dopants in yttrium orthosilicate ((151)Eu(3+):Y2SiO5) using optically detected nuclear magnetic resonance techniques. The observed decoherence rate is at least an order of magnitude lower than that of any other system suitable for an optical quantum memory. Furthermore, by employing dynamic decoupling, a coherence time of 370 +/- 60 minutes was achieved at 2 kelvin. It has been almost universally assumed that light is the best long-distance carrier for quantum information. However, the coherence time observed here is long enough that nuclear spins travelling at 9 kilometres per hour in a crystal would have a lower decoherence with distance than light in an optical fibre. This enables some very early approaches to entanglement distribution to be revisited, in particular those in which the spins are transported rather than the light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhong, Manjin -- Hedges, Morgan P -- Ahlefeldt, Rose L -- Bartholomew, John G -- Beavan, Sarah E -- Wittig, Sven M -- Longdell, Jevon J -- Sellars, Matthew J -- England -- Nature. 2015 Jan 8;517(7533):177-80. doi: 10.1038/nature14025.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia. ; 1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Department of Physics, Princeton University, Princeton, New Jersey 08554, USA. ; 1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Laboratoire Aime Cotton, CNRS-UPR 3321, Universite Paris-Sud and ENS Cachan, 91405 Orsay, France. ; 1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Fakultat fur Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, 80539 Munich, Germany. ; 1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Kayser-Threde GmbH, Wolfratshauser strasse 48, 81379 Munich, Germany. ; The Dodd-Walls Centre for Photonic and Quantum Technologies, and Department of Physics, University of Otago, 730 Cumberland Street, Dunedin 9016, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567283" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-07-19
    Description: The chemical step of natural protein synthesis, peptide bond formation, is catalysed by the large subunit of the ribosome. Crystal structures have shown that the active site for peptide bond formation is composed entirely of RNA. Recent work has focused on how an RNA active site is able to catalyse this fundamental biological reaction at a suitable rate for protein synthesis. On the basis of the absence of important ribosomal functional groups, lack of a dependence on pH, and the dominant contribution of entropy to catalysis, it has been suggested that the role of the ribosome is limited to bringing the substrates into close proximity. Alternatively, the importance of the 2'-hydroxyl of the peptidyl-transfer RNA and a Bronsted coefficient near zero have been taken as evidence that the ribosome coordinates a proton-transfer network. Here we report the transition state of peptide bond formation, based on analysis of the kinetic isotope effect at five positions within the reaction centre of a peptidyl-transfer RNA mimic. Our results indicate that in contrast to the uncatalysed reaction, formation of the tetrahedral intermediate and proton transfer from the nucleophilic nitrogen both occur in the rate-limiting step. Unlike in previous proposals, the reaction is not fully concerted; instead, breakdown of the tetrahedral intermediate occurs in a separate fast step. This suggests that in addition to substrate positioning, the ribosome is contributing to chemical catalysis by changing the rate-limiting transition state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154986/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154986/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hiller, David A -- Singh, Vipender -- Zhong, Minghong -- Strobel, Scott A -- GM54839/GM/NIGMS NIH HHS/ -- R01 GM054839/GM/NIGMS NIH HHS/ -- R01 GM054839-10/GM/NIGMS NIH HHS/ -- R01 GM054839-11/GM/NIGMS NIH HHS/ -- R01 GM054839-12/GM/NIGMS NIH HHS/ -- R01 GM054839-12S1/GM/NIGMS NIH HHS/ -- R01 GM054839-13/GM/NIGMS NIH HHS/ -- R01 GM054839-13S1/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Jul 17;476(7359):236-9. doi: 10.1038/nature10248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21765427" target="_blank"〉PubMed〈/a〉
    Keywords: *Biocatalysis ; Catalytic Domain ; Kinetics ; Models, Biological ; Models, Chemical ; Models, Molecular ; Organelle Biogenesis ; *Protein Biosynthesis ; Ribosomes/*chemistry/genetics/*metabolism ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-12-24
    Description: We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142569/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142569/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerstein, Mark B -- Lu, Zhi John -- Van Nostrand, Eric L -- Cheng, Chao -- Arshinoff, Bradley I -- Liu, Tao -- Yip, Kevin Y -- Robilotto, Rebecca -- Rechtsteiner, Andreas -- Ikegami, Kohta -- Alves, Pedro -- Chateigner, Aurelien -- Perry, Marc -- Morris, Mitzi -- Auerbach, Raymond K -- Feng, Xin -- Leng, Jing -- Vielle, Anne -- Niu, Wei -- Rhrissorrakrai, Kahn -- Agarwal, Ashish -- Alexander, Roger P -- Barber, Galt -- Brdlik, Cathleen M -- Brennan, Jennifer -- Brouillet, Jeremy Jean -- Carr, Adrian -- Cheung, Ming-Sin -- Clawson, Hiram -- Contrino, Sergio -- Dannenberg, Luke O -- Dernburg, Abby F -- Desai, Arshad -- Dick, Lindsay -- Dose, Andrea C -- Du, Jiang -- Egelhofer, Thea -- Ercan, Sevinc -- Euskirchen, Ghia -- Ewing, Brent -- Feingold, Elise A -- Gassmann, Reto -- Good, Peter J -- Green, Phil -- Gullier, Francois -- Gutwein, Michelle -- Guyer, Mark S -- Habegger, Lukas -- Han, Ting -- Henikoff, Jorja G -- Henz, Stefan R -- Hinrichs, Angie -- Holster, Heather -- Hyman, Tony -- Iniguez, A Leo -- Janette, Judith -- Jensen, Morten -- Kato, Masaomi -- Kent, W James -- Kephart, Ellen -- Khivansara, Vishal -- Khurana, Ekta -- Kim, John K -- Kolasinska-Zwierz, Paulina -- Lai, Eric C -- Latorre, Isabel -- Leahey, Amber -- Lewis, Suzanna -- Lloyd, Paul -- Lochovsky, Lucas -- Lowdon, Rebecca F -- Lubling, Yaniv -- Lyne, Rachel -- MacCoss, Michael -- Mackowiak, Sebastian D -- Mangone, Marco -- McKay, Sheldon -- Mecenas, Desirea -- Merrihew, Gennifer -- Miller, David M 3rd -- Muroyama, Andrew -- Murray, John I -- Ooi, Siew-Loon -- Pham, Hoang -- Phippen, Taryn -- Preston, Elicia A -- Rajewsky, Nikolaus -- Ratsch, Gunnar -- Rosenbaum, Heidi -- Rozowsky, Joel -- Rutherford, Kim -- Ruzanov, Peter -- Sarov, Mihail -- Sasidharan, Rajkumar -- Sboner, Andrea -- Scheid, Paul -- Segal, Eran -- Shin, Hyunjin -- Shou, Chong -- Slack, Frank J -- Slightam, Cindie -- Smith, Richard -- Spencer, William C -- Stinson, E O -- Taing, Scott -- Takasaki, Teruaki -- Vafeados, Dionne -- Voronina, Ksenia -- Wang, Guilin -- Washington, Nicole L -- Whittle, Christina M -- Wu, Beijing -- Yan, Koon-Kiu -- Zeller, Georg -- Zha, Zheng -- Zhong, Mei -- Zhou, Xingliang -- modENCODE Consortium -- Ahringer, Julie -- Strome, Susan -- Gunsalus, Kristin C -- Micklem, Gos -- Liu, X Shirley -- Reinke, Valerie -- Kim, Stuart K -- Hillier, LaDeana W -- Henikoff, Steven -- Piano, Fabio -- Snyder, Michael -- Stein, Lincoln -- Lieb, Jason D -- Waterston, Robert H -- 054523/Wellcome Trust/United Kingdom -- R01 GM088565/GM/NIGMS NIH HHS/ -- R01 GM088565-03/GM/NIGMS NIH HHS/ -- R01GM088565/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1775-87. doi: 10.1126/science.1196914. Epub 2010 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA. modencode.worm.pi@gersteinlab.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21177976" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/growth & development/metabolism ; Caenorhabditis elegans Proteins/genetics/metabolism ; Chromatin/genetics/metabolism/ultrastructure ; *Chromosomes/genetics/metabolism/ultrastructure ; Computational Biology/methods ; Conserved Sequence ; Evolution, Molecular ; *Gene Expression Profiling ; *Gene Expression Regulation ; Gene Regulatory Networks ; Genes, Helminth ; *Genome, Helminth ; Genomics/methods ; Histones/metabolism ; Models, Genetic ; *Molecular Sequence Annotation ; RNA, Helminth/genetics/metabolism ; RNA, Untranslated/genetics/metabolism ; Regulatory Sequences, Nucleic Acid ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-06-21
    Description: Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity Cell Death and Disease 4, e676 (June 2013). doi:10.1038/cddis.2013.203 Authors: C Liu, W Duan, R Li, S Xu, L Zhang, C Chen, M He, Y Lu, H Wu, H Pi, X Luo, Y Zhang, M Zhong, Z Yu & Z Zhou
    Keywords: bisphenol Ameiocyte spreadingmeiosisspermatogenesisstage of seminiferous epithelium
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...