ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-12
    Description: Asymmetric cell division, the partitioning of cellular components in response to polarizing cues during mitosis, has roles in differentiation and development. It is important for the self-renewal of fertilized zygotes in Caenorhabditis elegans and neuroblasts in Drosophila, and in the development of mammalian nervous and digestive systems. T lymphocytes, upon activation by antigen-presenting cells (APCs), can undergo asymmetric cell division, wherein the daughter cell proximal to the APC is more likely to differentiate into an effector-like T cell and the distal daughter is more likely to differentiate into a memory-like T cell. Upon activation and before cell division, expression of the transcription factor c-Myc drives metabolic reprogramming, necessary for the subsequent proliferative burst. Here we find that during the first division of an activated T cell in mice, c-Myc can sort asymmetrically. Asymmetric distribution of amino acid transporters, amino acid content, and activity of mammalian target of rapamycin complex 1 (mTORC1) is correlated with c-Myc expression, and both amino acids and mTORC1 activity sustain the differences in c-Myc expression in one daughter cell compared to the other. Asymmetric c-Myc levels in daughter T cells affect proliferation, metabolism, and differentiation, and these effects are altered by experimental manipulation of mTORC1 activity or c-Myc expression. Therefore, metabolic signalling pathways cooperate with transcription programs to maintain differential cell fates following asymmetric T-cell division.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851250/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851250/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verbist, Katherine C -- Guy, Cliff S -- Milasta, Sandra -- Liedmann, Swantje -- Kaminski, Marcin M -- Wang, Ruoning -- Green, Douglas R -- R01 GM096208/GM/NIGMS NIH HHS/ -- R37 GM052735/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 21;532(7599):389-93. doi: 10.1038/nature17442. Epub 2016 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA. ; Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27064903" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Transport Systems/metabolism ; Amino Acids/metabolism ; Animals ; CD8-Positive T-Lymphocytes/*cytology/*metabolism ; Cell Differentiation/genetics ; *Cell Division ; *Cell Polarity/genetics ; Female ; *Lymphocyte Activation ; Male ; Mice ; Multiprotein Complexes/metabolism ; Proto-Oncogene Proteins c-myc/genetics/metabolism ; Signal Transduction/genetics ; TOR Serine-Threonine Kinases/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ecology of freshwater fish 8 (1999), S. 0 
    ISSN: 1600-0633
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract– Four locations (i. e., mouth, lower midreach, upper midreach, and headwater) were sampled bimonthly for two years in a Kansas, Flint Hills stream. Principal components 1 (PC1; depth, width, substrate) and 2 (PC2; velocity, water temperature, conductivity) accounted for 70% of the variation in habitat variables. Principal component 1 varied more spatially than temporally, and PC2 exhibited the opposite pattern. Species diversity varied spatially with the highest values at the upper midreach and mouth and lowest in the headwaters. Species diversity also varied temporally with highest values in summer months and lowest in late fall and carly spring. Catch per unit effort (C/f) varied temporally and spatially by trophic guilds and species. In general, C/f values were highest in late fall and early spring and were lowest in early and mid summer. Fixed spatial variation (i. e., spatial difference independent of temporal factors) was higher than ephemeral spatial variation (i. e., spatial variation that varies temporally) for species with specialized feeding habits. Conversely, ephemeral spatial variation was highest for fish species with generalized feeding habits. These data indicate that standardizing reaches and dates are important if habitat, species diversity, and C/f data will be used in managing stream ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1095-8649
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Catch rates in gillnets and relative weight (Wr) of walleye Stizostedion vitreum, in Glen Elder Reservoir, Kansas, were lowest during the summer (June–August) and highest during the autumn (September–November). Approximately 80% of their annual growth in length and mass was attained during late summer and autumn. Growth was minimal during winter (January–February) and spring (March–May). The number of walleye with empty stomachs was highest during the summer. Invertebrates (Cladocera, Chironomidae) were common in walleye stomachs during the summer and spring, but contributed little to the ingested biomass. Gizzard shad Dorosoma cepedianum dominated walleye diets (per cent by mass) throughout the year. A bioenergetics model predicted that the proportion of maximum consumption (Pc) was highest during the autumn and was probably due to spatial overlap of walleye and gizzard shad once water temperatures were 〈22° C. The bioenergetics model predicted that walleye would lose up to 65% of their body mass during the summer if water temperature increased by 10% (as predicted by some global warming models). Growth during the autumn, winter and spring was enhanced up to 150% by increased temperatures. The results of this study indicate that lower condition, reduced consumption and slow growth are a generalized response of walleye to extreme temperatures. Elevated temperatures may have a net positive effect on walleye growth if they can survive the high thermal stress during summer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Ecology of freshwater fish 10 (2001), S. 0 
    ISSN: 1600-0633
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract – Few studies have been conducted to describe the age structure, growth rates and mortality of fishes in small stream ecosystems. The purpose of this study was therefore to determine age structure, growth rates and mortality (i.e., total annual mortality and, age-specific mortality) of central stonerollers Campostoma anomalum, creek chubs Semotilus atromaculatus, red shiners Cyprinella lutrensis and green sunfish Lepomis cyanellus from 13 streams on Fort Riley Military Reservation, Kansas, using incremental growth analysis. Further, we were interested in determining the influence of fish community and instream habitat characteristics on growth rates. The age structure of central stonerollers, creek chubs, and red shiners was dominated by young individuals (i.e., less than age 2); however, over 60% of the green sunfish were age 2 to age 4. Mean total annual mortality was 〉60% for cyprinids and averaged approximately 44% for green sunfish. The age-specific mortality of central stonerollers and red shiners was generally less than 45% between age 0 and 1 and increased to over 85% for fishes greater than age 1. Fish community characteristics (e.g., catch per unit effort of trophic guilds) and chemical habitat (e.g., total phosphorous) were not related to growth rates (P〉0.05). Growth of central stonerollers was not significantly correlated with physical habitat (P〉0.05). However, the growth increments of creek chubs, red shiners, and green sunfish were related to the amount of woody debris (e.g., total woody debris, log complex habitat; r〉0.60; P≤0.05). The results of this study provide important information on the population dynamic rate functions of cyprinid and green sunfish populations in small prairie streams. Furthermore, these data suggest that woody debris is important habitat influencing growth of stream fishes./〉
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...