ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-19
    Description: Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pakulska, Malgosia M -- Miersch, Shane -- Shoichet, Molly S -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):aac4750. doi: 10.1126/science.aac4750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ; Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989257" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Engineering ; Combinatorial Chemistry Techniques ; Delayed-Action Preparations/*chemistry ; Directed Molecular Evolution ; *Drug Design ; Humans ; Lactic Acid/*chemistry ; Microspheres ; Polyglycolic Acid/*chemistry ; Proteins/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-08-01
    Print ISSN: 1046-2023
    Electronic ISSN: 1095-9130
    Topics: Biology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...