ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Geophys. Prospecting, Tokyo, Elsevier, vol. 22, no. 3, pp. 458-475, pp. L16603
    Publication Date: 1974
    Keywords: Stacking ; Velocity analysis ; Applied geophysics ; Seismics (controlled source seismology) ; Layers
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 40 (1992), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: There is a general lack of awareness among ‘lay’ professionals (geophysicists included) regarding the limitations in the use of least-squares. Using a simple numerical model under simulated conditions of observational errors, the performance of least-squares and other goodness-of-fit criteria under various error conditions are investigated. The results are presented in a simplified manner that can be readily understood by the lay earth scientist. It is shown that the use of least-squares is, strictly, only valid either when the errors pertain to a normal probability distribution or under certain fortuitous conditions. The correct power to use (e.g. square, cube, square root, etc.) depends on the form of error distribution. In many fairly typical practical situations, least-squares is one of the worst criteria to use. In such cases, data treatment, ‘robust statistics’ or similar processes provide an alternative approach.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 21 (1973), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Geophysical prospecting 50 (2002), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: A linear instantaneous velocity model is used to describe the velocity variations in an uplifted unit that has been partly decompacted as a result of the reduction in overburden that often accompanies uplift. The model results in a series of equations for deriving values for the function parameters in the velocity–depth and the time– depth domains and for carrying out time-to-depth conversions. The formulation uses the base of the unit as a reference level to generate the reference datum from a combination of the depth of the base of the unit and a parameter that represents the decompaction factor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 22 (1974), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 21 (1973), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: A rigorous proof is presented to show that over a horizontally layered ground the rms velocity cannot exceed the stacking velocity. The proof helps to illustrate the difference between stacking and rms velocities in a quantitative manner. The series of Taner and Koehler (1969) is used for the purpose. Convergence of this series is tested. Including more terms will not necessarily improve the convergence. Although the series is rapidly convergent when the spread length/depth ratio is small, strong oscillations are observed when this ratio is high.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 22 (1974), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: A correct derivation of rms, average and interval velocities from one another and from common depth point stacking velocities requires a clear understanding of the relationships between these velocities. We relate the average velocity to the rms velocity through a “heterogeneity factor” which is a quantity that gives a measure of the degree of velocity heterogeneity in the ground. The interval velocity is a quantity which varies according to the method of its derivation. The difference between rms and stacking velocities depends on the heterogeneity factor and on the length of the spread. Unless allowed for, this difference can reverse the advantages of long spreads and cause large errors in interval velocity determinations. It may be removed through a number of techniques. The accuracy of stacking velocities in the presence of random “noise” is independent of the heterogeneity factor. Relevant expressions can be broken down into simple formulae which give the accuracy quickly and with good precision.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Geophysical prospecting 49 (2001), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Uplift and the accompanying reduction in overburden result in anomalously high velocity in the uplifted rock unit relative to its current depth. The present work utilizes the non-uniqueness of the parameters of instantaneous velocity versus depth functions as an effective tool for uplift studies. The linear function with its two parameters, V0 and k, is a very simple function and is used as the illustrative vehicle. In the parameter space, i.e. in a plot where one axis represents V0 and the other axis represents k, non-uniqueness can be represented by contours of equal goodness-of-fit values between the observed data and the fitted function. The contour delimiting a region of equivalent solutions in the parameter space is called a ‘solution trough’. Uplift corresponds to a rotation of the solution trough in the parameter space. It is shown that, in terms of relative depth changes, there are five possible configurations (five cases) of uplift in a given area (the mobile location) relative to another area (the reference location). The cases depend on whether the uplifted location had attained a (pre-uplift) maximum depth of burial that was greater than, similar to, or smaller than the maximum depth of burial at the reference location. Interpretation of the relationships between the solution troughs corresponding to the different locations makes it possible to establish which of the five cases applies to the uplifted location and to estimate the amount of uplift that the unit had undergone at that location. The difficulty in determining the reduction in velocity due to decompaction resulting from uplift is a main source of uncertainty in the estimate of the amount of uplift. This is a common problem with all velocity-based methods of uplift estimation. To help around this difficulty, the present work proposes a first-order approximation method for estimating the effect of decompaction on velocity in an uplifted area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Geophysical prospecting 45 (1997), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: The conversion of seismic time to depth through the use of analytical functions has been a common procedure in seismic work for many decades. With the exception of recent examples dealing with the linear function, none of the published time-depth relationships corresponding to these functions is applicable to multilayer depth conversion. The present work redresses this situation. It presents formulae applicable to multilayer depth conversion for a large number of analytical functions. The derivation is based on a procedure generally similar to that presented by Japsen (1993). Most of the functions considered date back to a publication by Kaufman in 1953 and earlier publications. A number of other functions hitherto not known in the industry are also presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 14 (1972), S. 73-74 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...