ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 551-557 
    ISSN: 0006-3592
    Keywords: denitrify ; carbon tetrachloride ; chloroform ; acetate ; nitrate ; bioremediation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fed batch experiments were performed to test the effects of electron donor and electron acceptor availability on the production of chloroform (CF) during carbon tetrachloride (CT) destruction by a denitrifying bacterial consortium. In one series of tests, acetate (electron donor) was present in excess while nitrate and nitrite (electron acceptor) were limiting. In the other series of tests, acetate was the limiting nutrient, and nitrate and nitrite were in excess. Under nitrate limiting conditions, 50% (±17%) of the CT transformed by the microorganisms was converted to CF. However, under acetate limiting conditions, only 4% (±4%) of the CT that was degraded appeared as CF. Previous research had suggested that denitrifying bacteria can degrade CT via two competing pathways. One of these pathways produces CF as the predominant end product. The second pathway produces CO2 as the primary end product. The results shown here suggest that the first pathway is dominant when nitrate and nitrite are depleted while the second pathway, which produces little CF, dominates when nitrate or nitrite are available.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 393-399 
    ISSN: 0006-3592
    Keywords: denitrification ; biodegradation ; kinetics ; 1,1,1-trichloroethane ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A denitrifying consortium capable of degrading carbon tetrachloride (CT) was shown to also degrade 1,1,1-trichloroethane (TCA). Fed-batch experiments demonstrated that the specific rate of TCA degradation by the consortium was comparable to the specific rate of CT degradation (approximately 0.01 L/gmol/min) and was independent of the limiting nutrient. Although previous work demonstrated that 4-50% of CT transformed by the consortium was converted to chloroform (CF), no reductive dechlorination products were detected during TCA degradation, regardless of the limiting nutrient. The lack of chlorinated TCA degradation products implies that the denitrifying consortium possesses an alternate pathway for the degradation of chlorinated solvents which does not involve reductive dechlorination. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:393-399, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-01-08
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...