ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  J. Geophys. Res., Stuttgart, Pergamon, vol. 96, no. 15, pp. 14461-14479, pp. L13613, (ISSN: 1340-4202)
    Publication Date: 1991
    Keywords: Deep seismic sounding (espec. cont. crust) ; Fault zone ; JGR
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Bull. Seism. Soc. Am., Luxembourg, EGS-Gauthier-Villars, vol. 84, no. 3, pp. 863-891, pp. 1310
    Publication Date: 1994
    Keywords: Seismicity ; Aftershocks ; Earthquake ; Statistical investigations ; BSSA
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005
    Keywords: Site amplification ; Dispersion ; Micro-tremor (seismic noise) ; Shear waves ; Velocity ; Velocity depth profile ; Surface waves ; BSSA ; SRICHWALSKI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Bull. Seism. Soc. Am., Amsterdam, Elsevier Scientific Publishing Company, vol. 89, no. 3, pp. 796-810, pp. B12308
    Publication Date: 1999
    Keywords: Seismology ; Inversion ; Travel time ; Three dimensional ; Velocity depth profile ; USA ; BSSA
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-01
    Description: We characterize shallow subsurface faulting and basin structure along a transect through heavily urbanized Reno, Nevada, with high-resolution seismic reflection imaging. The 6.8 km of P -wave data image the subsurface to approximately 800 m depth and delineate two subbasins and basin uplift that are consistent with structure previously inferred from gravity modeling in this region of the northern Walker Lane. We interpret two primary faults that bound the uplift and deform Quaternary deposits. The dip of Quaternary and Tertiary strata in the western subbasin increases with greater depth to the east, suggesting recurrent fault motion across the westernmost of these faults. Deformation in the Quaternary section of the western subbasin is likely evidence of extensional growth folding at the edge of the Truckee River through Reno. This deformation is north of, and on trend with, previously mapped Quaternary fault strands of the Mt. Rose fault zone. In addition to corroborating the existence of previously inferred intrabasin structure, these data provide evidence for an active extensional Quaternary fault at a previously unknown location within the Truckee Meadows basin that furthers our understanding of both the seismotectonic framework and earthquake hazards in this urbanized region.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-02-06
    Description: Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15 degrees dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 +/- 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stern, T A -- Henrys, S A -- Okaya, D -- Louie, J N -- Savage, M K -- Lamb, S -- Sato, H -- Sutherland, R -- Iwasaki, T -- England -- Nature. 2015 Feb 5;518(7537):85-8. doi: 10.1038/nature14146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Geophysics, Victoria University, Salamanca Road, Wellington 6140, New Zealand. ; Institute of Geological and Nuclear Sciences, 1 Fairway Drive, Lower Hutt 5010, New Zealand. ; Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, Los Angeles, California 90210, USA. ; Seismological Observatory, University of Nevada, 1664 North Virginia Street, Reno, Nevada 90210, USA. ; Earthquake Research Institute, Tokyo University, 1-1-1 Yoyoi, Tokyo 113-0032, Japan. ; 1] Institute of Geophysics, Victoria University, Salamanca Road, Wellington 6140, New Zealand [2] Institute of Geological and Nuclear Sciences, 1 Fairway Drive, Lower Hutt 5010, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25653000" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-30
    Description: A seismic compressed high-intensity radar pulse (CHIRP) survey of Pyramid Lake, Nevada, defines fault architecture and distribution within a key sector of the northern Walker Lane belt. More than 500 line-kilometers of high-resolution (decimeter) subsurface imagery, together with dated piston and gravity cores, were used to produce the first comprehensive fault map and attendant slip rates beneath the lake. A reversal of fault polarity is observed beneath Pyramid Lake, where down-to-the-east slip on the dextral Pyramid Lake fault to the south switches to down-to-the-west displacement on the Lake Range fault to the north. Extensional deformation within the northern two thirds of the basin is bounded by the Lake Range fault, which exhibits varying degrees of asymmetric tilting and stratal divergence due to along-strike segmentation. This structural configuration likely results from a combination of changes in slip rate along strike and the splaying of fault segments onshore. The potential splaying of fault segments onshore tends to shift the focus of extension away from the lake. The combination of normal- and oblique-slip faults in the northern basin gives Pyramid Lake its distinctive "fanning open to the north" geometry. The oblique-slip faults in the northwestern region of the lake are short and discontinuous in nature, possibly representing a nascent shear zone. In contrast, the Lake Range fault is long and well defined. Vertical slip rates measured across the Lake Range and other faults provide new estimates on extension across the Pyramid Lake basin. A minimum vertical slip rate of ~1.0 mm/yr is estimated along the Lake Range fault. When combined with fault length, slip rates yield a potential earthquake magnitude range between M6.4 and M7.0. Little to no offset on the Lake Range fault is observed in the sediment rapidly emplaced at the end of Tioga glaciation (12.5–9.5 ka). In contrast, since 9.5 ka, CHIRP imagery provides evidence for three or four major earthquakes, assuming a characteristic offset of 2.5 m per event. Regionally, our CHIRP investigation helps to reveal how strain is partitioned along the boundary between the northeastern edge of the Walker Lane and the northwest Basin and Range Province proper.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-09-01
    Description: INTRODUCTION The objective of our study is to supplement the regional P/S 3-D velocity model in the Reno basin with shear-wave velocity models derived from ambient noise interferometry (Aki 1957; Claerbout 1968; Shapiro et al. 2005; Sabra et al. 2005; Lin et al. 2008; Yang et al. 2008). We use a variety of seismic sensors in the Reno-Carson area (Figure 1). There is a gap for demonstrated extraction of Green's functions (GFs) from ambient noise between short and long interstation distances. The lateral resolution of existing tomographic models exceeds the dimensions of the Reno basin area (~60 km2), and their depth resolution is larger than the Reno basin depth to basement (
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-08-01
    Description: The Dead Sea Transform (DST) is the source for some of the largest earthquakes in the eastern Mediterranean. The seismic hazard presented by the DST threatens the Israeli, Palestinian, and Jordanian populations alike. Several deep and structurally complex sedimentary basins are associated with the DST. These basins are up to 10 km deep and typically bounded by active fault zones. The low seismicity of the DST, the sparse seismic network, and limited coverage of sedimentary basins result in a critical knowledge gap. Therefore, it is necessary to complement the limited instrumental data with synthetic data based on computational modeling, in order to study the effects of earthquake ground motion in these sedimentary basins. In this research we performed a 2D ground-motion analysis in the Dead Sea Basin (DSB) using a finite-difference code. Cross sections transecting the DSB were compiled for wave propagation simulations. Results indicate a complex pattern of ground-motion amplification affected by the geometric features in the basin. To distinguish between the individual contributions of each geometrical feature in the basin, we developed a semiquantitative decomposition approach. This approach enabled us to interpret the DSB results as follows: (1) Ground-motion amplification as a result of resonance occurs basin-wide due to a high impedance contrast at the base of the uppermost layer; (2) Steep faults generate a strong edge-effect that further amplifies ground motions; (3) Sub-basins cause geometrical focusing that may significantly amplify ground motions; and (4) Salt diapirs diverge seismic energy and cause a decrease in ground-motion amplitude.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-04
    Description: Over the last two years, the Nevada Seismological Laboratory has developed and refined Nevada ShakeZoning (NSZ) procedures to characterize earthquake hazards in the Intermountain West. Simulating the M L  5.6–5.8 Little Skull Mountain (LSM) earthquake validates the results of the NSZ process and the ground shaking it predicts for Las Vegas Valley (LVV). The NSZ process employs a physics-based finite-difference code from Lawrence Livermore Laboratory to compute wave propagation through complex 3D earth models. Computing limitations restrict the results to low frequencies of shaking. For this LSM regional model the limitation is to frequencies of 0.12 Hz, and below. The Clark County Parcel Map, completed in 2011, is a critical and unique geotechnical data set included in NSZ predictions for LVV. Replacing default geotechnical velocities with the Parcel Map velocities in a sensitivity test produced peak ground velocity amplifications of 5%–11% in places, even at low frequencies of 0.1 Hz. A detailed model of LVV basin-floor depth and regional basin-thickness models derived from gravity surveys by the U.S. Geological Survey are also important components of NSZ velocity-model building. In the NSZ-predicted seismograms at 0.1 Hz, Rayleigh-wave minus P -wave ( R – P ) differential arrival times and the pulse shapes of Rayleigh waves correlate well with the low-pass filtered LSM recordings. Importantly, peak ground velocities predicted by NSZ matched what was recorded, to be closer than a factor of two. Observed seismograms within LVV show longer durations of shaking than the synthetics, appearing as horizontally reverberating, 0.2 Hz longitudinal waves beyond 60 s after Rayleigh-wave arrival. Within the basins, the current velocity models are laterally homogeneous below 300 m depth, leading the 0.1 Hz NSZ synthetics to show insufficient shaking durations of only 30–40 s.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...