ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: ABSTRACT In mineral exploration, increased interest towards deeper mineralizations makes seismic methods attractive. One of the critical steps in seismic processing workflows is the static correction, which is applied to correct the effect of the shallow, highly‐heterogeneous subsurface layers, and improve the imaging of deeper targets. We showed an effective approach to estimate the statics, based on the analysis of surface waves (groundroll) contained in the seismic reflection data and we applied it to a legacy seismic line acquired at the iron‐oxide mining site of Ludvika in Sweden. We applied surface‐wave methods that were originally developed for hydrocarbon exploration, modified as a step‐by‐step workflow to suit the different geologic context of hard‐rock sites. The workflow starts with the detection of sharp lateral variations in the subsurface, the existence of which is common at hard‐rock sites. Their location is subsequently used, to ensure that the dispersion curves extracted from the data are not affected by strong lateral variations of the subsurface properties. The dispersion curves are picked automatically, windowing the data and applying a wavefield transform. A pseudo‐2D time‐average S‐wave velocity (VSz) and time‐average P‐wave velocity (VPz) profile are obtained directly from the dispersion curves, after inverting only a reference curve. The VPz profile is then used for the direct estimation of the one‐way traveltime, which provides the static corrections. The resulting P‐wave statics from the field data were compared with statics computed through conventional P‐wave tomography. Their difference was mostly negligible with more than 91 % of the estimations being in agreement with the conventional statics, proving the effectiveness of the proposed workflow. The application of the statics obtained from surface waves provided a stacked section comparable with that obtained by applying tomostatics. This article is protected by copyright. All rights reserved
    Print ISSN: 0016-8025
    Electronic ISSN: 1365-2478
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: ABSTRACT In order to assess the feasibility and validity of surface‐wave tomography as a tool for mineral exploration, we present an active seismic 3D case study from the Siilinjärvi mine in Eastern Finland. The aim of the survey is to identify the formation carrying the mineralization in an area south of the main pit, which will be mined in the future. Before acquiring the data, we performed an accurate survey design to maximize data coverage and minimize the time for deployment and recollection of the equipment. We extract path‐averaged Rayleigh‐wave phase‐velocity dispersion curves by means of a two‐station method. We invert them using a computationally efficient tomographic code which does not require the computation of phase‐velocity maps and inverts directly for 1D S‐wave velocity models. The retrieved velocities are in good agreement with the data from a borehole in the vicinity, and the pseudo‐3D S‐wave velocity volume allows us to identify the geological contact between the formation hosting most of the mineralization and the surrounding rock. We conclude that the proposed method is a valid tool, given the small amount of equipment used and the acceptable amount of time required to process the data. This article is protected by copyright. All rights reserved
    Print ISSN: 0016-8025
    Electronic ISSN: 1365-2478
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-01
    Description: Starting from the nondimensionalization of equations of motion we partition the set of the velocity models in equivalence classes, such that the full waveform of an element in a given class can be calculated from the full waveform of any other element in the same class by scaling model parameters. We give a formal derivation of the seismic wavefield scale properties and we prove their capability through the use of numerical examples. Besides this, we introduce how the scale properties can be used to save computational time in full waveform modeling and inversion. In forward modeling we can use them for the calculation of the full waveform of any model in the same equivalence class of a model whose full waveform has been previously calculated. In full waveform inversion, scale properties can be used for full waveform matching: Given an experimental seismogram and a synthetic one, we can choose, in the same class of the synthetic model, another element whose waveform is closer to the experimental one.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-05-01
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-01
    Description: Near-surface sharp lateral variations can be either a target of investigation or an issue for the reconstruction of reliable subsurface models in surface-wave (SW) prospecting. Effective and computationally fast methods are consequently required for detection and location of these shallow heterogeneities. Four SW-based techniques, chosen between available literature methods, are tested for detection and location purposes. All of the techniques are updated for multifold data and then systematically applied on new synthetic and field data. The selected methods are based on computation of the energy, energy decay exponent, attenuation coefficient, and autospectrum. The multifold upgrade is based on the stacking of the computed parameters for single-shot or single-offset records and improves readability and interpretation of the final results. Detection and location capabilities are extensively evaluated on a variety of 2D synthetic models, simulating different target geometries, embedment conditions, and impedance contrasts with respect to the background. The methods are then validated on two field cases: a shallow low-velocity body in a sedimentary sequence and a hard-rock site with two embedded subvertical open fractures. For a quantitative comparison, the horizontal gradients of the four parameters are analyzed to establish uniform criteria for location estimation. All of the methods indicate ability in detecting and locating lateral variations having lower acoustic impedance than the surrounding material, with errors generally comparable or lower than the geophone spacing. More difficulties are encountered in locating targets with higher acoustic impedance than the background, especially in the presence of weak lateral contrasts, high embedment depths, and small dimensions of the object.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-09-01
    Description: Starting from the nondimensionalization of equations of motion we partition the set of the velocity models in equivalence classes, such that the full waveform of an element in a given class can be calculated from the full waveform of any other element in the same class by scaling model parameters. We give a formal derivation of the seismic wavefield scale properties and we prove their capability through the use of numerical examples. Besides this, we introduce how the scale properties can be used to save computational time in full waveform modeling and inversion. In forward modeling we can use them for the calculation of the full waveform of any model in the same equivalence class of a model whose full waveform has been previously calculated. In full waveform inversion, scale properties can be used for full waveform matching: Given an experimental seismogram and a synthetic one, we can choose, in the same class of the synthetic model, another element whose waveform is closer to the experimental one.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-06-01
    Print ISSN: 1569-4445
    Electronic ISSN: 1873-0604
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...