ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-27
    Description: High acoustic seafloor-backscatter signals characterize hundreds of patches of methane-derived authigenic carbonates and chemosynthetic communities associated with hydrocarbon seepage on the Nile Deep Sea Fan (NDSF) in the Eastern Mediterranean Sea. During a high-resolution ship-based multibeam survey covering a ~ 225 km2 large seafloor area in the Central Province of the NDSF we identified 163 high-backscatter patches at water depths between 1500 and 1800 m, and investigated the source, composition, turnover, flux and fate of emitted hydrocarbons. Systematic Parasound single beam echosounder surveys of the water column showed hydroacoustic anomalies (flares), indicative of gas bubble streams, above 8% of the high-backscatter patches. In echosounder records flares disappeared in the water column close to the upper limit of the gas hydrate stability zone located at about 1350 m water depth due to decomposition of gas hydrate skins and subsequent gas dissolution. Visual inspection of three high-backscatter patches demonstrated that sediment cementation has led to the formation of continuous flat pavements of authigenic carbonates typically 100 to 300 m in diameter. Volume estimates, considering results from high-resolution autonomous underwater vehicle (AUV)-based multibeam mapping, were used to calculate the amount of carbonate-bound carbon stored in these slabs. Additionally, the flux of methane bubbles emitted at one high-backscatter patch was estimated (0.23 to 2.3 × 106 mol a− 1) by combined AUV flare mapping with visual observations by remotely operated vehicle (ROV). Another high-backscatter patch characterized by single carbonate pieces, which were widely distributed and interspaced with sediments inhabited by thiotrophic, chemosynthetic organisms, was investigated using in situ measurements with a benthic chamber and ex situ sediment core incubation and allowed for estimates of the methane consumption (0.1 to 1 × 106 mol a− 1) and dissolved methane flux (2 to 48 × 106 mol a− 1). Our comparison of dissolved and gaseous methane fluxes as well as methane-derived carbonate reservoirs demonstrates the need for quantitative assessment of these different methane escape routes and their interaction with the geo-, bio-, and hydrosphere at cold seeps.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Science of The Total Environment, ELSEVIER SCIENCE BV, 589, pp. 191-199, ISSN: 0048-9697
    Publication Date: 2017-06-04
    Description: Although transport of oxygen via the aerenchyma tissue and subsequent oxygen loss across root surfaces is well-documented for salt marsh grasses, only few studies have measured the oxygenation of sediment surrounding roots and rhizomes. In this study, sediment oxygenation was assessed in situ in rhizospheres of the intertidal salt marsh grass, Spartina anglica - an invading species, vigorously spreading in many wetlands around the world. The rhizospheres of two populations of S. anglica with differing plant morphology growing in different sediment types were investigated in situ using a novel multifiber optode system with 100 oxygen probes. No oxygen was detected inside the rhizospheres at any depth in either location, indicating a limited impact of plant-mediated sediment oxygenation on the bulk anoxic sediment. Subsequent planar optode studies imaging the oxygen content around the roots substantiated these findings showing that sediment oxygenation was present in both locations, but it was confined only to the immediate vicinity of the root tips. The size of the oxic zones surrounding the root tips differed between sediment-types: in S. anglica growing in permeable sandy sediment, oxic root zones extended 1.5 mm away from the roots surface compared to only 0.4 mm in muddy tidal flat deposit, which had a substantially higher oxygen demand. The oxygen concentration inside the oxic root zones remained stable during continuous light and air-exposure of the aboveground biomass. In comparison, sediment oxygenation generated by burrowing infauna (Hediste diversicolor) showed to be markedly more temporally variability, reaching anoxic conditions multiple times during a 5-h period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Earth-Science Reviews, ELSEVIER SCIENCE BV, 228, pp. 103987, ISSN: 0012-8252
    Publication Date: 2022-03-30
    Description: The seabed plays a key role in the marine carbon cycle as a) the terminal location of aerobic oxidation of organic matter, b) the greatest anaerobic bioreactor, and c) the greatest repository for reactive organic carbon on Earth. We compiled data on the oxygen uptake of marine sediments with the objective to understand the constraints on mineralization rates of deposited organic matter and their relation to key environmental parameters. The compiled database includes nearly 4000 O 2 uptake data and is available as supplementary material. It includes also information on bottom water O 2 concentration, O 2 penetration depth, geographic position, water depth, and full information on the data sources. We present the different in situ and ex situ approaches to measure the total oxygen uptake (TOU) and the diffusive oxygen uptake (DOU) of sediments and discuss their robustness towards methodological errors and statistical uncertainty. We discuss O 2 transport through the benthic and diffusive boundary layers, the diffusion- and fauna-mediated O 2 uptake, and the coupling of aerobic respiration to anaerobic processes. Five regional examples are presented to illustrate the diversity of the seabed: Eutrophic seas, oxygen minimum zones, abyssal plains, mid-oceanic gyres, and hadal trenches. A multiple correlation analysis shows that seabed O 2 uptake is primarily controlled by ocean depth and sea surface primary productivity. The O2 penetration depth scales with the DOU according to a power law that breaks down under the abyssal ocean gyres. The developed multiple correlation model was used to draw a global map of seabed O2 uptake rates. Respiratory coefficients, differentiated for depth regions of the ocean, were used to convert the global O 2 uptake to organic carbon oxidation. The resulting global budget shows an oxidation of 212 Tmol C yr − 1 in marine sediments with a 5-95% confidence interval of 175-260 Tmol C yr − 1 . A comparison with the global flux of particulate organic carbon (POC) from photic surface waters to the deep sea, determined from multiple sediment trap studies, suggests a deficit in the sedimentation flux at 2000 m water depth of about 70% relative to the carbon turnover in the underlying seabed. At the ocean margins, the flux of organic carbon from rivers and from vegetated coastal ecosystems contributes greatly to the budget and may even exceed the phytoplankton production on the inner continental shelf.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...