ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1973-01-01
    Print ISSN: 0031-9171
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1975-01-01
    Print ISSN: 0031-9171
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-06-13
    Description: Validation activities and facility types are discussed for six different flow codes: (1) perfect gas; (2) real gas; (3) nozzle/plume; (4) combustion; (5) thermochemical nonequilibrium; and (6) boundary layer and transition. All data and results are presented in viewgraph format.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA CFD Validation Workshop; p 112-136
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-11-15
    Description: Critical issues concerning real gas effects in hypervelocity flows where the thermochemical nonequilibrium effects are pronounced, are described. Emphasis is on the development and validation of benchmark analysis tools. Approaches to develop and/or enhance phenomenological models, including test techniques to acquire databases, and incorporate them into computational flow field simulation codes are described. The performance characteristics of shock tubes, ballistic ranges and arc heated wind tunnels, state of the art diagnostics are included. The following aerothermodynamic phenomena are discussed: aerodynamic parameters, viscous interactions, turbulent transition, forebody heating/heat transfer, radiative heating, Lee-Base flows and low density real gas.
    Keywords: AERONAUTICS (GENERAL)
    Type: ESA, Proceedings of the 2nd European Symposium on Aerothermodynamics for Space Vehicles; p 263-27
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2011-10-14
    Description: In this chapter recent activity in real-gas database definition and code validation will be summarized. In the Phase I report of the Working Group (WG) 181, aerothermodynamic problems were classified, for purpose of discussion, into seven types: aerodynamic parameters, viscous/shock interaction, boundary-layer transition, forebody-heating/heat-transfer, radiation and ablation, lee and base-region flow, and low-density flow. Several of these problem types were the subject of various chapters of the Phase 1 report describing real-gas effects and ground test facility issues. In this chapter some background and objectives outlined in the real-Gas effects Chapter V of the Phase 1 report will be reviewed. The results of the blunt cone test campaign developed under the auspices of the WG18 activity to study real-gas phenomena will be summarized, including the experimental and computational programs, issues and questions, and recommendations. Further, recent progress in other real-gas areas beyond the blunt cone test campaign will be discussed. Finally, a summary in which the present status of our understanding of real-gas issues will be presented.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Hypersonic Experimental and Computational Capability, Improvement and Validation; Volume 2; AGARD-AR-319-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-14
    Description: This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.
    Keywords: Research and Support Facilities (Air)
    Type: Future Aerospace Technology in the Service of the Alliance; Volume 3; AGARD-CP-600-Vol-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-10-14
    Description: Mission and concept studies for space exploration are described for the purpose of identifying flow physics for entry capsule mission scenarios. These studies are a necessary precursor to the development and application of CFD prediction methodology for capsule aerothermodynamics. The scope of missions considered includes manned and unmanned cislunar missions, missions to the minor planets, and missions to the major planets and other celestial objects in the solar system.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2011-10-14
    Description: The flow behind the shock wave formed around objects which fly at hypervelocity behaves differently from that of a perfect gas. Molecules become vibrationally excited, dissociated, and ionized. The hot gas may emit or absorb radiation. When the atoms produced by dissociation reach the wall surface, chemical reactions, including recombination, may occur. The thermochemical phenomena of vibration, dissociation, ionization, surface chemical reaction, and radiation are referred to commonly as high-temperature real-gas phenomena. The phenomena cause changes in the dynamic behavior of the flow and the surface pressure and heat transfer distribution around the object. The character of a real gas is described by the internal degrees of freedom and state of constituent molecules; nitrogen and oxygen for air. The internal energy states, rotation, vibration and electronic, of the molecules are excited and, in the limit, the molecular bonds are exceeded and the gas dissociated into atomic and, possibly, ionic constituents. The process of energy transfer causing excitation, dissociation and recombination is a rate process controlled by particle collisions. Binary, two-body, collisions are sufficient to cause internal excitation, dissociation and ionization while three-body collisions are required to recombine the particles into molecular constituents. If the rates of energy transfer are fast with respect to the local fluid dynamic time scale the gas is in, or nearly in, equilibrium. If the energy transfer rates are very slow the gas can be described as frozen. In all other instances, wherein any of the energy exchange rates are comparable to the local fluid time scale, the gas will be thermally or chemically reacting and out of equilibrium. Real gas thermochemical nonequilibrium processes are important in the determination of aerodynamic heating; both convective (including wall catalytic effects) and radiative heating. To illustrate this we consider the hypervelocity flow over a bluff body typical of an atmospheric entry vehicle or an aerospace transfer vehicle (ASTV). The qualitative aspects of a hypersonic flow field over a bluff body are discussed in two parts, forebody and afterbody, with attention to which particular physical effects must be included in an analysis. This will indicate what type of numerical modeling will be adequate in each region of the flow. A bluff forebody flow field is dominated by the presence of the strong bow shock wave and the consequent heating, and chemical reaction of the gas. At high altitude hypersonic flight conditions the thermal excitation and chemical reaction of the gas occur slowly enough that a significant portion of the flow field is in a state of thermochemical nonequilibrium. A second important effect is the presence of the thick boundary layer along the forebody surface. In this region there are large thermal and chemical species gradients due to the interaction of the gas with the wall. Also at high altitudes the shock wave and the boundary layer may become so thick that they merge; in this case the entire shock layer is dominated by viscous effects.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-19
    Description: Computational methods solving the thin shear layer formulation of the compressible, Reynolds-averaged Navier-Stokes equations are presently used to investigate the strongly interactive flow field about aircraft afterbodies. Solutions for a variety of axisymmetric afterbody and nozzle geometries are solved by means of a time-dependent implicit numerical algorithm for both subsonic and supersonic external flows, and the results obtained are compared with experimental data. A novel adaptive-grid technique is used to resolve flow regimes having large gradients, as well as to improve the accuracy and efficiency of the computational scheme.
    Keywords: AERODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 24; 496-503
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-19
    Description: Speed and memory requirements placed on supercomputers by five different disciplines important to aerospace are discussed and compared with the capabilities of various existing computers and those projected to be available before the end of this century. The disciplines chosen for consideration are turbulence physics, aerodynamics, aerothermodynamics, chemistry, and human vision modeling. Example results for problems illustrative of those currently being solved in each of the disciplines are presented and discussed. Limitations imposed on physical modeling and geometrical complexity by the need to obtain solutions in practical amounts of time are identified. Computational challenges for the future, for which either some or all of the current limitations are removed, are described. Meeting some of the challenges will require computer speeds in excess of exaflop/s (10 to the 18th flop/s) and memories in excess of petawords (10 to the 15th words).
    Keywords: COMPUTER SYSTEMS
    Type: IEEE, Proceedings (ISSN 0018-9219); 77; 1038-105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...