ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Berndt, Christian; Feseker, Tomas; Treude, Tina; Krastel, Sebastian; Liebetrau, Volker; Niemann, Helge; Bertics, Victoria J; Dumke, Ines; Dünnbier, Karolin; Ferre, Benedicte; Graves, Carolyn; Gross, Felix; Hissmann, Karen; Hühnerbach, Veit; Krause, Stefan; Lieser, Kathrin; Schauer, Jürgen; Steinle, Lea (2014): Temporal constraints on hydrate-controlled methane seepage off Svalbard. Published Online January 2 2014, Science, https://doi.org/10.1126/science.1246298
    Publication Date: 2023-03-03
    Description: Methane hydrate is an ice-like substance that is stable at high-pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release may possibly accelerate global warming. Here, we can corroborate that hydrates play a role in the observed seepage of gas, but we present evidence that seepage off Svalbard has been ongoing for at least three thousand years and that seasonal fluctuations of 1-2°C in the bottom-water temperature cause periodic gas hydrate formation and dissociation, which focus seepage at the observed sites.
    Keywords: Center for Marine Environmental Sciences; GEOMAR; Helmholtz Centre for Ocean Research Kiel; MARUM
    Type: Dataset
    Format: application/zip, 29 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-11-01
    Print ISSN: 1462-2912
    Electronic ISSN: 1462-2920
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-05-21
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2018-06-14
    Description: Biological dinitrogen (N2) fixation is the primary input of fixed nitrogen (N) into the marine biosphere, making it an essential process contributing to the biological functions of all organisms. Because biologically available N often limits marine productivity, microbial processes leading to its loss and gain (e.g. denitrification and N2 fixation, respectively) play an important role in global biogeochemical cycles. Bioturbation is known to influence benthic N cycling, most often reported as enhancement of denitrification and a subsequent loss of N2 from the system. N2 fixation has rarely been addressed in bioturbation studies. Instead, sedimentary N2 fixation typically has been considered important in relatively rare, localized habitats such as rhizosphere and phototrophic microbial mat environments. However, the potential for N2 fixation in marine sediments may be more widespread. We show here that nitrogenase activity can be very high (up to 5 nmol C2H4 cm–3 h–1) in coastal sediments bioturbated by the ghost shrimp Neotrypaea californiensis and at depths below 5 cm. Integrated subsurface N2-fixation rates were greater than those previously found for un-vegetated estuarine sediments and were comparable to rates from photosynthetic microbial mats and rhizospheres. Inhibition experiments and genetic analysis showed that this activity was mainly linked to sulfate reduction. Sulfatereducing bacteria (SRB) are widespread and abundant in marine sediments, with many possessing the genetic capacity to fix N2. Our results show that N2 fixation by SRB in bioturbated sediments may be an important process leading to new N input into marine sediments. Given the ubiquity of bioturbation and of SRB in marine sediments, this overlooked benthic N2 fixation may play an important role in marine N and carbon (C) cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N) cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB) have the genetic potential to fix molecular N (N2). Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N2-fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure N2-fixation and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation) activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, rates of benthic denitrification were also measured and the active N-fixing community was examined via molecular tools. Integrated rates of N2-fixation and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm−3 d−1 of N and SO42−, respectively) and October (approx. 22 and 1300 nmol cm−3 d−1 of N and SO42−, respectively), and lowest rates occurring in February (approx. 8 and 32 nmol cm−3 d−1 of N and SO42−, respectively). These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities, and negatively correlated with bottom water oxygen concentrations. Other variables that also appeared to play a role in rate determination were bioturbation, bubble irrigation and winter storm events. Molecular analysis demonstrated the presence of nifH sequences related to two known N2-fixing SRB, namely Desulfovibrio vulgaris and Desulfonema limicola, supporting the hypothesis that some of the nitrogenase activity detected may be attributed to SRB. Denitrification appeared to follow a similar trend as the other microbial processes and the ratio of denitrification to N2-fixation ranged from 6.8 in August to 1.1 in February, indicating that in February, the two processes are close to being in balance in terms of N loss and N gain. Overall, our data show that Eckernförde Bay represents a complex ecosystem where numerous environmental variables combine to influence benthic microbial activities involving N and sulfur cycling.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: This study presents benthic data from 12 samplings from February to December 2010 in a 28 m deep channel in the southwest Baltic Sea. In winter, the distribution of solutes in the porewater was strongly modulated by bioirrigation which efficiently flushed the upper 10 cm of sediment, leading to concentrations which varied little from bottom water values. Solute pumping by bioirrigation fell sharply in the summer as the bottom waters became severely hypoxic (〈 2 μM O2). At this point the giant sulfide-oxidizing bacteria Beggiatoa was visible on surface sediments. Despite an increase in O2 following mixing of the water column in November, macrofauna remained absent until the end of the sampling. Contrary to expectations, metabolites such as dissolved inorganic carbon, ammonium and hydrogen sulfide did not accumulate in the upper 10 cm during the hypoxic period when bioirrigation was absent, but instead tended toward bottom water values. This was taken as evidence for episodic bubbling of methane gas out of the sediment acting as an abiogenic irrigation process. Porewater–seawater mixing by escaping bubbles provides a pathway for enhanced nutrient release to the bottom water and may exacerbate the feedback with hypoxia. Subsurface dissolved phosphate (TPO4) peaks in excess of 400 μM developed in autumn, resulting in a very large diffusive TPO4 flux to the water column of 0.7 ± 0.2 mmol m−2 d−1. The model was not able to simulate this TPO4 source as release of iron-bound P (Fe–P) or organic P. As an alternative hypothesis, the TPO4 peak was reproduced using new kinetic expressions that allow Beggiatoa to take up porewater TPO4 and accumulate an intracellular P pool during periods with oxic bottom waters. TPO4 is then released during hypoxia, as previous published results with sulfide-oxidizing bacteria indicate. The TPO4 added to the porewater over the year by organic P and Fe–P is recycled through Beggiatoa, meaning that no additional source of TPO4 is needed to explain the TPO4 peak. Further experimental studies are needed to strengthen this conclusion and rule out Fe–P and organic P as candidate sources of ephemeral TPO4 release. A measured C/P ratio of 〈 20 for the diffusive flux to the water column during hypoxia directly demonstrates preferential release of P relative to C under oxygen-deficient bottom waters. This coincides with a strong decrease in dissolved inorganic N/P ratios in the water column to ~ 1. Our results suggest that sulfide oxidizing bacteria could act as phosphorus capacitors in systems with oscillating redox conditions, releasing massive amounts of TPO4 in a short space of time and dramatically increasing the internal loading of TPO4 to the overlying water.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-20
    Description: This study investigates the biogeochemical processes that control the benthic fluxes of dissolved nitrogen (N) species in Boknis Eck - a 28 m deep site in the Eckernförde Bay (southwestern Baltic Sea). Bottom water oxygen concentrations (O2-BW) fluctuate greatly over the year at Boknis Eck, being well-oxygenated in winter and experiencing severe bottom water hypoxia and even anoxia in late summer. The present communication addresses the winter situation (February 2010). Fluxes of ammonium (NH4+), nitrate (NO3-) and nitrite (NO2-) were simulated using a benthic model that accounted for transport andbiogeochemical reactions and constrained with ex situ flux measurements and sediment geochemical analysis. The sediments were a net sink for NO3- (-0.35 mmol m-2 d-1 of NO3-), of which 75% was ascribed to dissimilatory reduction of nitrate to ammonium (DNRA) by sulfide oxidizing bacteria, and 25% to NO3- reduction to NO2- by denitrifying microorganisms. NH4+ fluxes were high (1.74 mmol m-2d-1 of NH4+), mainly due to the degradation of organic nitrogen, and directed out of the sediment. NO2-fluxes were negligible. The sediments in Boknis Eck are, therefore, a net source of dissolved inorganic nitrogen(DIN = NO3- + NO2- + NH4+) during winter. This is in large part due to bioirrigation, which accounts for 76% of the benthic efflux of NH4+, thus reducing the capacity for nitrification of NH4+. The combined rate of fixed N loss by denitrification and anammox was estimated at 0.08 mmol m-2 d-1 of N2, which is at the lower end of previously reported values. A systematic sensitivity analysis revealed that denitrification and anammox respond strongly and positively to the concentration of NO3- in the bottomwater (NO3-BW).Higher O2-BW decreases DNRA and denitrification but stimulates both anammox and the contribution ofanammox to total N2 production (%Ramx). A complete mechanistic explanation of these findings is provided. Our analysis indicates that nitrification is the geochemical driving force behind the observed correlation between %Ramx and water depth in the seminal study of Dalsgaard et al. (2005). Despite remaining uncertainties, the results provide a general mechanistic framework for interpreting the existing knowledge of N-turnover processes and fluxes in continental margin sediments, as well as predicting the types of environment where these reactions are expected to occur prominently.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Talk] In: 2011 ASLO Aquatic Sciences Meeting, 13.02.-18.02.2011, San Juan, Puerto Rico, USA .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Talk] In: Boknis Eck Time Series Workshop, 10.05.2011, Kiel, Germany .
    Publication Date: 2012-03-08
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...