ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-12-03
    Description: Polar coralline red algae (Corallinales, Rhodophyta) that form rhodoliths have received little attention concerning their potential as ecosystem engineers and carbonate factories; although, recent findings revealed that they are much more widespread in polar waters than previously thought. The present study deals with the northernmost rhodolith communities currently known, discovered in 2006 at 80 degrees 31'N in Nordkappbukta (North Cape Bay) at Nordaustlandet, Svalbard. These perennial coralline algae must be adapted to extreme seasonality in terms of light regime (c. 4 months winter darkness), sea ice coverage, nutrient supply, turbidity of the water column, temperature and salinity. The rhodolith communities and their environment were investigated using multibeam swath bathymetry, CTD measurements, recordings of the photosynthetic active radiation (PAR) and determination of the water chemistry, seabed imaging and targeted sampling by means of the manned submersible JAGO as well as benthic collections with a dredge. The coralline flora was composed mainly of Lithothamnion glaciale, with a lesser amount of Phymatolithon tenue. Based on their distribution and development at different depth levels, a facies model was developed. Rhodoliths occurred between 30 and 51 m, while coralline algae attached to cobbles were present as deep as 78 m. Measurements of the PAR indicated their adaptation to extreme low light levels. Ambient waters were always saturated with reference to calcite and aragonite for the whole area. The rhodolith-associated macrobenthic fauna samples yielded 59 species, only one of which was typically Arctic, and the concomitant appearance of corallines and grazers kept the corallines free from epiphytes and coequally provided feeding grounds for the grazers. Overall, L. glaciate and P. tenue appeared to be well adapted to the extreme environment of the Arctic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...