ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-19
    Description: The lithospheric architecture of passive margins is crucial for understanding the tectonic processes that caused the breakup of Gondwana. We highlight the evolution of the South Atlantic passive margins by a simple thermal lithosphere‐asthenosphere boundary (LAB) model based on onset and cessation of rifting, crustal thickness, and stretching factors. We simulate lithospheric thinning and select the LAB as the T = 1,330°C isotherm, which is calculated by 1D advection and diffusion. Stretching factors and margin geometry are adjusted to state‐of‐the‐art data sets, giving a thermal LAB model that is especially designed for the continental margins of the South Atlantic. Our LAB model shows distinct variations along the passive margins that are not imaged by global LAB models, indicating different rifting mechanisms. For example, we model up to 200 km deep lithosphere in the South American Santos Basin and shallow lithosphere less than 60 km in the Namibe Basin offshore Africa. These two conjugate basins reflect a strong asymmetry in LAB depth that resembles variations in margin width. In a Gondwana reconstruction, we discuss these patterns together with seismic velocity perturbations for the Central and Austral Segments of the margins. The shallow lithosphere in the Namibe Basin correlates with signatures of the Angola Dome, attributed to epeirogenic uplift in the Neogene, suggesting an additional component of post‐breakup lithospheric thinning.
    Description: Plain Language Summary: Passive margins mark the transition zone from a continent to the ocean without being an active boundary of tectonic plates. They are typical for all continents on the globe. In the South Atlantic, the passive margins are located adjacent to the eastern coastline of South America and the western coastline of Africa. Studying the architecture of passive margins is essential for understanding plate tectonic history of the earth because they define how the continents once fitted together and how they broke apart. Passive margin segments on opposite sides of an ocean form so called conjugate margin pairs. Most geophysical studies of passive margins focus on the first few kilometers under the surface. However, their deeper extension to the base of the rigid shell of the earth, known as lithospheric thickness, is to a large extent unknown. Based on a simple temperature model, we find that the lithospheric thickness is highly variable and shows large variations along the South Atlantic passive margins. These differences are associated with the extension of conjugate margin pairs: where one margin is narrower than the conjugate, its lithospheric thickness is greater. This asymmetry indicates that the geodynamic processes, causing the breakup of the two continents, must have been asymmetric as well. Offshore Angola, the lithosphere is modeled shallow and matches with relatively young rock signatures. This suggests additional tectonic activity on the African side after the breakup between the two continents occurred.
    Description: Key Points: A simple thermal lithosphere‐asthenosphere boundary (LAB) model for the South Atlantic passive margins has been developed. The LAB model shows distinct variations along the margins that correlate with margin widths. Conjugate margin pairs reflect an asymmetry in LAB depth patterns that are locally related to post‐breakup lithospheric thinning.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5880/GFZ.1.3.2020.006
    Description: https://www.earthbyte.org/webdav/ftp/Data_Collections/Muller_etal_2019_Tectonics/
    Description: https://doi.org/10.5281/zenodo.7074000
    Description: https://earthbyte.org/webdav/ftp/Data_Collections/Haas_etal_2022_Tectonics/
    Keywords: ddc:551.13 ; passive margins ; South Atlantic ; thermal LAB ; rift asymmetry ; Gondwana
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 449 (2007), S. 795-796 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Look up 'speed boosting' on the Internet and you'll find recipes for boosting the speed of computers, modems, cars, photographic film, gas turbines and even your golf cart. But how would you increase the speed of a continent ploughing through Earth's viscous, churning mantle? Kumar et al. (page ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 404 (2000), S. 145-150 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The West Antarctic rift system is the result of late Mesozoic and Cenozoic extension between East and West Antarctica, and represents one of the largest active continental rift systems on Earth. But the timing and magnitude of the plate motions leading to the development of this rift system ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 396 (1998), S. 455-459 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Crustal accretion at mid-ocean ridges is generally modelled as a symmetric process. Regional analyses, however, often show either small-scale asymmetries, which vary rapidly between individual spreading corridors, or large-scale asymmetries represented by consistent excess accretion on one of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-0581
    Keywords: Geoid topography ; fracture zone morphology ; satellite altimetry ; transform fault ; plate reconstructions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Geoid data from Geosat and subsatellite basement depth profiles of the Kane Fracture Zone in the central North Atlantic were used to examine the correlation between the short-wavelength geoid (λ=25–100 km) and the uncompensated basement topography. The processing technique we apply allows the stacking of geoid profiles, although each repeat cycle has an unknown long-wavelength bias. We first formed the derivative of individual profiles, stacked up to 22 repeat cycles, and then integrated the average-slope profile to reconstruct the geoid height. The stacked, filtered geoid profiles have a noise level of about 7 mm in geoid height. The subsatellite basement topography was obtained from a recent compilation of structure contours on basement along the entire length of the Kane Fracture Zone. The ratio of geoid height to topography over the Kane Fracture Zone valley decreases from about 20–25 cm km-1 over young ocean crust to 5–0 cm km-1 over ocean crust older than 140 Ma. Both geoid and basement depth of profiles were projected perpendicular to the Kane Fracture Zone, resampled at equal intervals and then cross correlated. The cross correlation shows that the short-wavelength geoid height is well correlated with the basement topography. For 33 of the 37 examined pro-files, the horizontal mismatches are 10 km or less with an average mismatch of about 5 km. This correlation is quite good considering that the average width of the Kane Fracture Zone valley at median depth is 10–15 km. The remaining four profiles either cross the transverse ridge just east of the active Kane transform zone or overlie old crust of the M-anomaly sequence. The mismatch over the transverse ridge probably is related to a crustal density anomaly. The relatively poor correlation of geoid and basement depth in profiles of ocean crust older than 130–140 Ma reflects poor basement-depth control along subsatellite tracks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-01
    Print ISSN: 1674-9871
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-08
    Description: The complex and computationally expensive nature of landscape evolution models poses significant challenges to the inference and optimization of unknown model parameters. Bayesian inference provides a methodology for estimation and uncertainty quantification of unknown model parameters. In our previous work, we developed parallel tempering Bayeslands as a framework for parameter estimation and uncertainty quantification for the Badlands landscape evolution model. Parallel tempering Bayeslands features high-performance computing that can feature dozens of processing cores running in parallel to enhance computational efficiency. Nevertheless, the procedure remains computationally challenging since thousands of samples need to be drawn and evaluated. In large-scale landscape evolution problems, a single model evaluation can take from several minutes to hours and in some instances, even days or weeks. Surrogate-assisted optimization has been used for several computationally expensive engineering problems which motivate its use in optimization and inference of complex geoscientific models. The use of surrogate models can speed up parallel tempering Bayeslands by developing computationally inexpensive models to mimic expensive ones. In this paper, we apply surrogate-assisted parallel tempering where the surrogate mimics a landscape evolution model by estimating the likelihood function from the model. We employ a neural-network-based surrogate model that learns from the history of samples generated. The entire framework is developed in a parallel computing infrastructure to take advantage of parallelism. The results show that the proposed methodology is effective in lowering the computational cost significantly while retaining the quality of model predictions.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-10-01
    Description: Australia is distinctive because it experienced first-order, broad-scale vertical motions during the Cenozoic. Here, we use plate-tectonic reconstructions and a model of mantle convection to quantitatively link the large-scale flooding history of the continent to mantle convection since 50 Ma. Subduction-driven geodynamic models show that Australia undergoes a 200 m northeast downward tilt as it approaches and overrides subducted slabs between Melanesia and the proto–Tonga-Kermadec subduction systems. However, the model only produces the observed continentwide subsidence, with 300 m of northeast downward tilt since the Eocene, if we assume that Australia has moved northward away from a relatively hot mantle anomaly. The models suggest that Australia's paleoshoreline evolution can only be reproduced if the continent moved northward, away from a large buoyant anomaly. This results in continentwide subsidence of ∼200 m. The additional progressive, continentwide tilting down to the northeast can be attributed to the horizontal motion of the continent toward subducted slabs sinking below Melanesia.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-09
    Description: Although many sources of atmospheric CO2 have been estimated, the major sinks are poorly understood in a deep-time context. Here we combine plate reconstructions, the eruption ages and outlines of Large Igneous Provinces (LIPs), and the atmospheric CO2 proxy record to investigate how their eruptions and weathering within the equatorial humid zone impacted global atmospheric CO2 since 400 Ma. Wavelet analysis reveals significant correlations between the eruption of the Emeishan LIP (259 Ma), the Siberian Traps (251 Ma), the Central Atlantic Magmatic Province (201 Ma), the second pulse of the North Atlantic Igneous Province (55 Ma), the High Arctic LIP (130 Ma), and the Deccan Traps (65 Ma) and perturbations in atmospheric CO2. Our analysis also reveals a clear relationship between the weathering of the Central Atlantic Magmatic Province (~200–100 Ma), the Deccan Traps (50–35 Ma), and the Afar Arabian LIP (30–0 Ma) and a significant atmospheric CO2 drawdown. Our results illustrate the significant role of subaerial LIP emplacement and weathering in modulating atmospheric CO2 and Earth's surface environments. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-01
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...