ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 46-54 
    ISSN: 0006-3592
    Keywords: smooth muscle ; polyglycolic acid ; biodegradable ; tissue engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 × 5 mm, 2-mm thick) of polyglycolic acid (PGA) fibers. Cells were seeded by injecting a cell suspension into polymer matrices in tissue culture dishes (static seeding), by stirring polymer matrices and a cell suspension in spinner flasks (stirred seeding), or by agitating polymer matrices and a cell suspension in tubes with an orbital shaker (agitated seeding). The density of SMCs adherent to these matrices was a function of cell concentration in the seeding solution, but under all conditions a larger number (approximately 1 order of magnitude) and more uniform distribution of SMCs adherent to the matrices were obtained with dynamic versus static seeding methods. The dynamic seeding methods, as compared to the static method, also ultimately resulted in new tissues that had a higher cellularity, more uniform cell distribution, and greater elastin deposition. The effects of culture conditions were next studied by culturing cell-polymer constructs in a stirred bioreactor versus static culture conditions. The stirred culture of SMC-seeded polymer matrices resulted in tissues with a cell density of 6.4 ± 0.8 × 108 cells/cm3 after 5 weeks, compared to 2.0 ± 1.1 × 108 cells/cm3 with static culture. The elastin and collagen synthesis rates and deposition within the engineered tissues were also increased by culture in the bioreactors. The elastin content after 5-week culture in the stirred bioreactor was 24 ± 3%, and both the elastin content and the cellularity of these tissues are comparable to those of native SM tissue. New tissues were also created in vivo when dynamically seeded polymer matrices were implanted in rats for various times. In summary, the system defined by these studies shows promise for engineering a tissue comparable in many respects to native SM. This engineered tissue may find clinical applications and provide a tool to study molecular mechanisms in vascular development. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 46-54, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 157 (1993), S. 615-624 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: There are no studies of the effect of stretch in cultured pulmonary vascular smooth muscle, and some data suggest that a stretch-mediated increase in connective tissue synthesis in pulmonary arteries is mediated by the endothelium. To investigate whether stretch can serve as a growth stimulus in this smooth muscle, we studied two types of cultured pulmonary arterial smooth muscle cells (a multiply passaged clonal line of rat cells [PAC1], and early passage lamb cells [EPTC]). Cells were grown on a collagen-coated silicone surface and subjected to repetitive stretch (0.33-0.5 Hz; 10-20% strain). The relative rates of total RNA, DNA, protein, and soluble collagen synthesis were determined using 3H precursors, and c-fos and collagen mRNAs by Northern blot analysis. Stretch caused no significant change in the rate of RNA synthesis in either PAC1 cells (+9%) or EPTC ( - 3%). The relative rate of total protein synthesis was decreased by stretch (6% in PAC1 cells and 36% in EPTC [both NS]) as was the rate of collagen synthesis (-24% in EPTC [NS]). In EPTC, the percentage of 3H-thymidine labeled cells was modestly increased with 24 h stretch (17 ± 5.7%; P ≤.001), but trichloroacetic acid (TCA) precipitated 3H-thymidine was unaltered by stretch, and the number of cells not significantly changed with stretch. c-fos mRNA expression was only inconsistently induced by stretch x30 min in EPTC, and not at all in PAC1 cells. Expression of mRNA for α1 (I) and α1 (III) collagen was not changed significantly by 24 h or 48 h of stretch. We conclude that stretch does not serve as a significant growth stimulus in cultured pulmonary vascular smooth muscle cells in this system. These findings do not rule out the possibility that stretch is a growth stimulus for these cells under different conditions, but do suggest that other models will be needed to determine if and how mechanical stimuli affect growth of pulmonary vascular smooth muscle. © 1993 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-12-01
    Print ISSN: 0021-9541
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...