ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈p〉This paper presents the geohazard assessment for a proposed bridge across Bjørnafjorden in western Norway. The fjord is 〈i〉c.〈/i〉 5 km wide with a maximum depth of 550 m at the proposed bridge crossing. The main geohazards of concern are submarine slope instabilities. To identify locations of instability, their susceptibility to failure, and their potential runout distances, we performed the following analyses: (1) static and pseudo-static limit equilibrium analyses for the entire fjord crossing area; (2) 1D seismic slope stability sensitivity analyses for different slope angles and soil depths; (3) 2D static and pseudo-static finite element analyses for selected profiles; (4) back-analysis of a palaeolandslide; and (5) quasi-2D and quasi-3D landslide dynamic simulations calibrated using results from the back-analysis. The workflow progresses from simplified to more advanced analyses focusing on the most critical locations. The results show that the soils in many locations of the fjord are potentially unstable and could be the loci of landslides and debris flows. The evidence of numerous palaeosubmarine landslides identified on geophysical records reinforces this conclusion. However, the landslide triggers and timing are currently unknown. This paper demonstrates the need for comprehensive and multidisciplinary geohazard analyses for any infrastructure projects conducted in fjords.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-02
    Description: This paper presents the geohazard assessment for a proposed bridge across Bjørnafjorden in western Norway. The fjord is c. 5 km wide with a maximum depth of 550 m at the proposed bridge crossing. The main geohazards of concern are submarine slope instabilities. To identify locations of instability, their susceptibility to failure, and their potential runout distances, we performed the following analyses: (1) static and pseudo-static limit equilibrium analyses for the entire fjord crossing area; (2) 1D seismic slope stability sensitivity analyses for different slope angles and soil depths; (3) 2D static and pseudo-static finite element analyses for selected profiles; (4) back-analysis of a palaeolandslide; and (5) quasi-2D and quasi-3D landslide dynamic simulations calibrated using results from the back-analysis. The workflow progresses from simplified to more advanced analyses focusing on the most critical locations. The results show that the soils in many locations of the fjord are potentially unstable and could be the loci of landslides and debris flows. The evidence of numerous palaeosubmarine landslides identified on geophysical records reinforces this conclusion. However, the landslide triggers and timing are currently unknown. This paper demonstrates the need for comprehensive and multidisciplinary geohazard analyses for any infrastructure projects conducted in fjords.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...