ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 1975-01-01
    Print ISSN: 0004-6256
    Electronic ISSN: 1538-3881
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1977-01-01
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: Photometric and spectrophotometric observations have been made of the reflection nebulae NGC 1435, NGC 2068, NGC 7023, and IC 1287 in an attempt to detect continuous fluorescence by dust grains. Several effects of importance for observations of such faint objects are discussed, including instrumental light scattering, a photographic effect, and a time-delay effect which can occur if the illuminating star is a spectrum variable. It is found that continuous fluorescence by interstellar grains is not likely to exist and that it cannot account for more than 10% of the total surface brightness of these reflection nebulae. No evidence of diffuse interstellar features is found in the spectra of these nebulae.
    Keywords: ASTROPHYSICS
    Type: Astronomical Journal; 80; Jan. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: Hubble's equation relating the maximum apparent angular extent of a reflection nebula to the apparent magnitude of the illuminating star has been reconsidered under a set of less restrictive assumptions. A computational technique is developed which permits the use of fits to observed m, log a values to determine the albedo of the particles composing reflection nebulae, providing only that one assumes a particular phase function. Despite the fact that all orders of scattering, anisotropic phase functions, and illumination by the general stellar field are considered, the albedo which is determined for reflection nebulae by this method appears larger than that for interstellar particles in general. The possibility that the higher surface brightness might be due to a continuous fluorescence mechanism is considered both theoretically and observationally.
    Keywords: SPACE SCIENCES
    Type: NASA-CR-138072
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: Photometric and spectrophotometric observations were made of the reflection nebulae NGC1435, NGC2068, NGC7023, and IC1287 in an attempt to detect continuous fluorescence by dust grains. Several effects of importance for observations of such faint objects are discussed, including instrumental light scattering, a photographic effect, and a time delay effect which can occur if the illuminating star is a spectrum variable. It is found that continuous fluorescence by interstellar grains is not likely to exist and that it cannot account for more than 10 percent of the total surface brightness of these reflection nebulae. No evidence of diffuse interstellar features is found in the spectra of these nebulae.
    Keywords: SPACE SCIENCES
    Type: NASA-CR-138029
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: The relation between the apparent angular extent of a reflection nebula and the apparent magnitude of its illuminating star was reconsidered under a less restrictive set of assumptions. A computational technique was developed which permits the use of fits to the observed m-log a values to determine the albedo of particles composing reflection nebulae, providing only that a phase function and average optical thickness are assumed. Multiple scattering, anisotropic phase functions, and illumination by the general star field are considered, and the albedo of reflection nebular particles appears to be the same as that for interstellar particles in general. The possibility of continuous fluorescence contributions to the surface brightness is also considered.
    Keywords: SPACE SCIENCES
    Type: NASA-CR-138134
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...