ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of radioanalytical and nuclear chemistry 244 (2000), S. 237-240 
    ISSN: 1588-2780
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Instrumental neutron activation analysis (INAA) with gamma-ray spectrometry was applied to determine As, Ca, Cd, Cl, Co, Cu, Cr, Fe, Hg, K, Mg, Mn, Mo, Na, Sb, Se and Zn in the Brazilian agroindustrial by-products. These materials are widely used in ruminant feeding. The results obtained were compared with requirement and maximum tolerable concentrations. The general conclusions from the data obtained were: (1) many by-products presented concentrations of some essential elements lower than the requirement concentrations, while in some concentrations of Cr, Fe, Mg and Se exceeded by a little the maximum tolerable concentrations, (2) the elements As, Cd, Hg and Sb, generally considered toxic, showed concentrations lower than maximum tolerable values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-04
    Description: Barium zinc borosilicate glasses with a molar composition x BaO -(60− x ) ZnO -30 B 2 O 3 -10 SiO 2 , where x ranged from 0 to 60 mol%, were prepared using melt-quenching method. The effect of BaO substitution for ZnO on the sintering, crystallization, and dielectric characteristics has been investigated. The behavior of the studied barium zinc borosilicate glasses was mainly determined by the relative amount of the structural modifier oxides ( BaO and ZnO ) and the ionic size, and field strength of the modifying cations ( Ba 2+ , Zn 2+ ). Increased amounts of BaO decreased both glass transition temperature and crystallization temperature, while increasing the relative dielectric constant. Sintering occurred before crystallization for glasses where substitution of BaO for ZnO was up to 30 mol%, but for higher substitution levels, crystallization occurred during the sintering process hindering densification.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-10-10
    Description: The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651158/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651158/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlton, Jane M -- Adams, John H -- Silva, Joana C -- Bidwell, Shelby L -- Lorenzi, Hernan -- Caler, Elisabet -- Crabtree, Jonathan -- Angiuoli, Samuel V -- Merino, Emilio F -- Amedeo, Paolo -- Cheng, Qin -- Coulson, Richard M R -- Crabb, Brendan S -- Del Portillo, Hernando A -- Essien, Kobby -- Feldblyum, Tamara V -- Fernandez-Becerra, Carmen -- Gilson, Paul R -- Gueye, Amy H -- Guo, Xiang -- Kang'a, Simon -- Kooij, Taco W A -- Korsinczky, Michael -- Meyer, Esmeralda V-S -- Nene, Vish -- Paulsen, Ian -- White, Owen -- Ralph, Stuart A -- Ren, Qinghu -- Sargeant, Tobias J -- Salzberg, Steven L -- Stoeckert, Christian J -- Sullivan, Steven A -- Yamamoto, Marcio M -- Hoffman, Stephen L -- Wortman, Jennifer R -- Gardner, Malcolm J -- Galinski, Mary R -- Barnwell, John W -- Fraser-Liggett, Claire M -- N01 AI030071/AI/NIAID NIH HHS/ -- R01 AI064478/AI/NIAID NIH HHS/ -- R01 AI064478-05/AI/NIAID NIH HHS/ -- R01 GM070793/GM/NIGMS NIH HHS/ -- R01 GM070793-01A2/GM/NIGMS NIH HHS/ -- R01 GM083873/GM/NIGMS NIH HHS/ -- R01 LM006845/LM/NLM NIH HHS/ -- R01 LM006845-09/LM/NLM NIH HHS/ -- England -- Nature. 2008 Oct 9;455(7214):757-63. doi: 10.1038/nature07327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research/J. Craig Venter Institute, 9704 Medical Research Drive, Rockville, Maryland 20850, USA. jane.carlton@nyumc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18843361" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Artemisinins/metabolism/pharmacology ; Atovaquone/metabolism/pharmacology ; Cell Nucleus/genetics ; Chromosomes/genetics ; Conserved Sequence/genetics ; Erythrocytes/parasitology ; Evolution, Molecular ; Genome, Protozoan/*genetics ; *Genomics ; Haplorhini/parasitology ; Humans ; Isochores/genetics ; Ligands ; Malaria, Vivax/metabolism/*parasitology ; Multigene Family ; Plasmodium vivax/drug effects/*genetics/pathogenicity/physiology ; Sequence Analysis, DNA ; Species Specificity ; Synteny/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-01-16
    Description: We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080659/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080659/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlton, Jane M -- Hirt, Robert P -- Silva, Joana C -- Delcher, Arthur L -- Schatz, Michael -- Zhao, Qi -- Wortman, Jennifer R -- Bidwell, Shelby L -- Alsmark, U Cecilia M -- Besteiro, Sebastien -- Sicheritz-Ponten, Thomas -- Noel, Christophe J -- Dacks, Joel B -- Foster, Peter G -- Simillion, Cedric -- Van de Peer, Yves -- Miranda-Saavedra, Diego -- Barton, Geoffrey J -- Westrop, Gareth D -- Muller, Sylke -- Dessi, Daniele -- Fiori, Pier Luigi -- Ren, Qinghu -- Paulsen, Ian -- Zhang, Hanbang -- Bastida-Corcuera, Felix D -- Simoes-Barbosa, Augusto -- Brown, Mark T -- Hayes, Richard D -- Mukherjee, Mandira -- Okumura, Cheryl Y -- Schneider, Rachel -- Smith, Alias J -- Vanacova, Stepanka -- Villalvazo, Maria -- Haas, Brian J -- Pertea, Mihaela -- Feldblyum, Tamara V -- Utterback, Terry R -- Shu, Chung-Li -- Osoegawa, Kazutoyo -- de Jong, Pieter J -- Hrdy, Ivan -- Horvathova, Lenka -- Zubacova, Zuzana -- Dolezal, Pavel -- Malik, Shehre-Banoo -- Logsdon, John M Jr -- Henze, Katrin -- Gupta, Arti -- Wang, Ching C -- Dunne, Rebecca L -- Upcroft, Jacqueline A -- Upcroft, Peter -- White, Owen -- Salzberg, Steven L -- Tang, Petrus -- Chiu, Cheng-Hsun -- Lee, Ying-Shiung -- Embley, T Martin -- Coombs, Graham H -- Mottram, Jeremy C -- Tachezy, Jan -- Fraser-Liggett, Claire M -- Johnson, Patricia J -- 072031/Wellcome Trust/United Kingdom -- G0000508/Medical Research Council/United Kingdom -- G0000508(56841)/Medical Research Council/United Kingdom -- G9722968/Medical Research Council/United Kingdom -- G9722968(65078)/Medical Research Council/United Kingdom -- R01 LM006845/LM/NLM NIH HHS/ -- R01 LM006845-08/LM/NLM NIH HHS/ -- R01 LM007938/LM/NLM NIH HHS/ -- R01 LM007938-04/LM/NLM NIH HHS/ -- U01 AI050913/AI/NIAID NIH HHS/ -- U01 AI050913-01A1/AI/NIAID NIH HHS/ -- U01 AI050913-02/AI/NIAID NIH HHS/ -- UO1 AI50913-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):207-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Research Drive, Rockville, MD 20850, USA. jane.carlton@med.nyu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport/genetics ; DNA Transposable Elements ; DNA, Protozoan/genetics ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Humans ; Hydrogen/metabolism ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Multigene Family ; Organelles/metabolism ; Oxidative Stress/genetics ; Peptide Hydrolases/genetics/metabolism ; Protozoan Proteins/genetics/physiology ; RNA Processing, Post-Transcriptional ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Sexually Transmitted Diseases/parasitology ; Trichomonas Infections/parasitology/transmission ; Trichomonas vaginalis/cytology/*genetics/metabolism/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-07-05
    Description: We report the genome sequence of Theileria parva, an apicomplexan pathogen causing economic losses to smallholder farmers in Africa. The parasite chromosomes exhibit limited conservation of gene synteny with Plasmodium falciparum, and its plastid-like genome represents the first example where all apicoplast genes are encoded on one DNA strand. We tentatively identify proteins that facilitate parasite segregation during host cell cytokinesis and contribute to persistent infection of transformed host cells. Several biosynthetic pathways are incomplete or absent, suggesting substantial metabolic dependence on the host cell. One protein family that may generate parasite antigenic diversity is not telomere-associated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, Malcolm J -- Bishop, Richard -- Shah, Trushar -- de Villiers, Etienne P -- Carlton, Jane M -- Hall, Neil -- Ren, Qinghu -- Paulsen, Ian T -- Pain, Arnab -- Berriman, Matthew -- Wilson, Robert J M -- Sato, Shigeharu -- Ralph, Stuart A -- Mann, David J -- Xiong, Zikai -- Shallom, Shamira J -- Weidman, Janice -- Jiang, Lingxia -- Lynn, Jeffery -- Weaver, Bruce -- Shoaibi, Azadeh -- Domingo, Alexander R -- Wasawo, Delia -- Crabtree, Jonathan -- Wortman, Jennifer R -- Haas, Brian -- Angiuoli, Samuel V -- Creasy, Todd H -- Lu, Charles -- Suh, Bernard -- Silva, Joana C -- Utterback, Teresa R -- Feldblyum, Tamara V -- Pertea, Mihaela -- Allen, Jonathan -- Nierman, William C -- Taracha, Evans L N -- Salzberg, Steven L -- White, Owen R -- Fitzhugh, Henry A -- Morzaria, Subhash -- Venter, J Craig -- Fraser, Claire M -- Nene, Vishvanath -- New York, N.Y. -- Science. 2005 Jul 1;309(5731):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA. gardner@tigr.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15994558" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Antigens, Protozoan/genetics ; Cattle ; Cell Proliferation ; Chromosomes/genetics ; Conserved Sequence ; Enzymes/genetics/metabolism ; Genes, Protozoan ; *Genome, Protozoan ; Lymphocytes/cytology/*parasitology ; Mitochondria/metabolism ; Molecular Sequence Data ; Organelles/genetics/physiology ; Plasmodium falciparum/genetics ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/*genetics/metabolism ; Sequence Analysis, DNA ; Synteny ; Telomere/genetics ; Theileria parva/*genetics/growth & development/pathogenicity/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-07-16
    Description: A comparison of gene content and genome architecture of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, three related pathogens with different life cycles and disease pathology, revealed a conserved core proteome of about 6200 genes in large syntenic polycistronic gene clusters. Many species-specific genes, especially large surface antigen families, occur at nonsyntenic chromosome-internal and subtelomeric regions. Retroelements, structural RNAs, and gene family expansion are often associated with syntenic discontinuities that-along with gene divergence, acquisition and loss, and rearrangement within the syntenic regions-have shaped the genomes of each parasite. Contrary to recent reports, our analyses reveal no evidence that these species are descended from an ancestor that contained a photosynthetic endosymbiont.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉El-Sayed, Najib M -- Myler, Peter J -- Blandin, Gaelle -- Berriman, Matthew -- Crabtree, Jonathan -- Aggarwal, Gautam -- Caler, Elisabet -- Renauld, Hubert -- Worthey, Elizabeth A -- Hertz-Fowler, Christiane -- Ghedin, Elodie -- Peacock, Christopher -- Bartholomeu, Daniella C -- Haas, Brian J -- Tran, Anh-Nhi -- Wortman, Jennifer R -- Alsmark, U Cecilia M -- Angiuoli, Samuel -- Anupama, Atashi -- Badger, Jonathan -- Bringaud, Frederic -- Cadag, Eithon -- Carlton, Jane M -- Cerqueira, Gustavo C -- Creasy, Todd -- Delcher, Arthur L -- Djikeng, Appolinaire -- Embley, T Martin -- Hauser, Christopher -- Ivens, Alasdair C -- Kummerfeld, Sarah K -- Pereira-Leal, Jose B -- Nilsson, Daniel -- Peterson, Jeremy -- Salzberg, Steven L -- Shallom, Joshua -- Silva, Joana C -- Sundaram, Jaideep -- Westenberger, Scott -- White, Owen -- Melville, Sara E -- Donelson, John E -- Andersson, Bjorn -- Stuart, Kenneth D -- Hall, Neil -- AI045039/AI/NIAID NIH HHS/ -- AI45038/AI/NIAID NIH HHS/ -- AI45061/AI/NIAID NIH HHS/ -- R01 AI043062/AI/NIAID NIH HHS/ -- U01 AI040599/AI/NIAID NIH HHS/ -- U01 AI043062/AI/NIAID NIH HHS/ -- U01 AI045038/AI/NIAID NIH HHS/ -- U01 AI045039/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):404-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA. nelsayed@tigr.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16020724" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Chromosomes/genetics ; Evolution, Molecular ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Genomics ; Leishmania major/chemistry/*genetics/metabolism ; Molecular Sequence Data ; Multigene Family ; Mutation ; Phylogeny ; Plastids/genetics ; *Proteome ; Protozoan Proteins/chemistry/*genetics/physiology ; Recombination, Genetic ; Retroelements ; Species Specificity ; Symbiosis ; Synteny ; Telomere/genetics ; Trypanosoma brucei brucei/chemistry/*genetics/metabolism ; Trypanosoma cruzi/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-02-12
    Description: Molecular control of the pluripotent state is thought to reside in a core circuitry of master transcription factors including the homeodomain-containing protein NANOG, which has an essential role in establishing ground state pluripotency during somatic cell reprogramming. Whereas the genomic occupancy of NANOG has been extensively investigated, comparatively little is known about NANOG-associated proteins and their contribution to the NANOG-mediated reprogramming process. Using enhanced purification techniques and a stringent computational algorithm, we identify 27 high-confidence protein interaction partners of NANOG in mouse embryonic stem cells. These consist of 19 previously unknown partners of NANOG that have not been reported before, including the ten-eleven translocation (TET) family methylcytosine hydroxylase TET1. We confirm physical association of NANOG with TET1, and demonstrate that TET1, in synergy with NANOG, enhances the efficiency of reprogramming. We also find physical association and reprogramming synergy of TET2 with NANOG, and demonstrate that knockdown of TET2 abolishes the reprogramming synergy of NANOG with a catalytically deficient mutant of TET1. These results indicate that the physical interaction between NANOG and TET1/TET2 proteins facilitates reprogramming in a manner that is dependent on the catalytic activity of TET1/TET2. TET1 and NANOG co-occupy genomic loci of genes associated with both maintenance of pluripotency and lineage commitment in embryonic stem cells, and TET1 binding is reduced upon NANOG depletion. Co-expression of NANOG and TET1 increases 5-hydroxymethylcytosine levels at the top-ranked common target loci Esrrb and Oct4 (also called Pou5f1), resulting in priming of their expression before reprogramming to naive pluripotency. We propose that TET1 is recruited by NANOG to enhance the expression of a subset of key reprogramming target genes. These results provide an insight into the reprogramming mechanism of NANOG and uncover a new role for 5-methylcytosine hydroxylases in the establishment of naive pluripotency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606645/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606645/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Costa, Yael -- Ding, Junjun -- Theunissen, Thorold W -- Faiola, Francesco -- Hore, Timothy A -- Shliaha, Pavel V -- Fidalgo, Miguel -- Saunders, Arven -- Lawrence, Moyra -- Dietmann, Sabine -- Das, Satyabrata -- Levasseur, Dana N -- Li, Zhe -- Xu, Mingjiang -- Reik, Wolf -- Silva, Jose C R -- Wang, Jianlong -- 079249/Wellcome Trust/United Kingdom -- 086692/Wellcome Trust/United Kingdom -- 095645/Wellcome Trust/United Kingdom -- 1R01-GM095942-01A1/GM/NIGMS NIH HHS/ -- BB/H008071/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0700098/Medical Research Council/United Kingdom -- R01 GM095942/GM/NIGMS NIH HHS/ -- R01 HL112294/HL/NHLBI NIH HHS/ -- WT079249/Wellcome Trust/United Kingdom -- WT086692MA/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2013 Mar 21;495(7441):370-4. doi: 10.1038/nature11925. Epub 2013 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23395962" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/*physiology ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells ; Gene Expression Regulation, Developmental ; Genome ; Homeodomain Proteins/genetics/*metabolism ; Mice ; Protein Binding ; Proto-Oncogene Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-28
    Description: Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christophorou, Maria A -- Castelo-Branco, Goncalo -- Halley-Stott, Richard P -- Oliveira, Clara Slade -- Loos, Remco -- Radzisheuskaya, Aliaksandra -- Mowen, Kerri A -- Bertone, Paul -- Silva, Jose C R -- Zernicka-Goetz, Magdalena -- Nielsen, Michael L -- Gurdon, John B -- Kouzarides, Tony -- 092096/Wellcome Trust/United Kingdom -- 101050/Wellcome Trust/United Kingdom -- 101861/Wellcome Trust/United Kingdom -- AI099728/AI/NIAID NIH HHS/ -- G1001690/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Mar 6;507(7490):104-8. doi: 10.1038/nature12942. Epub 2014 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2]. ; 1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden [3]. ; 1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. ; 1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] EMBRAPA Dairy Cattle Research Center, Juiz de Fora, Brazil [3] Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK. ; 1] Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK [2] Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK. ; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK [2] Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK [3] Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; 1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. ; Department of proteomics, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health Sciences, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark. ; 1] The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK [2] Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/chemistry/metabolism ; Binding Sites ; Cellular Reprogramming/genetics ; Chromatin/chemistry/*metabolism ; *Chromatin Assembly and Disassembly ; Citrulline/*metabolism ; DNA/metabolism ; Embryo, Mammalian/cytology/metabolism ; Gene Expression Regulation ; Histones/*chemistry/*metabolism ; Hydrolases/metabolism ; Mice ; Pluripotent Stem Cells/cytology/*metabolism ; Protein Binding ; *Protein Processing, Post-Translational ; Proteomics ; Substrate Specificity ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-21
    Description: Polaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories. We report the first experimental demonstration of a genuinely quantum state of the microcavity polariton field, by swapping a photon for a polariton in a two-photon entangled state generated by parametric downconversion. When bringing this single-polariton quantum state in contact with a polariton condensate, we observe a disentangling with the external photon. This manifestation of a polariton quantum state involving a single quantum unlocks new possibilities for quantum information processing with interacting bosons.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-04-11
    Description: Uranium-lead geochronology in detrital zircons and provenance analyses in eight boreholes and two surface stratigraphic sections in the northern Andes provide insight into the time of closure of the Central American Seaway. The timing of this closure has been correlated with Plio-Pleistocene global oceanographic, atmospheric, and biotic events. We found that a uniquely Panamanian Eocene detrital zircon fingerprint is pronounced in middle Miocene fluvial and shallow marine strata cropping out in the northern Andes but is absent in underlying lower Miocene and Oligocene strata. We contend that this fingerprint demonstrates a fluvial connection, and therefore the absence of an intervening seaway, between the Panama arc and South America in middle Miocene times; the Central American Seaway had vanished by that time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Montes, C -- Cardona, A -- Jaramillo, C -- Pardo, A -- Silva, J C -- Valencia, V -- Ayala, C -- Perez-Angel, L C -- Rodriguez-Parra, L A -- Ramirez, V -- Nino, H -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):226-9. doi: 10.1126/science.aaa2815.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universidad de los Andes, Bogota, Colombia. cmontes@uniandes.edu.co. ; Universidad Nacional de Colombia, Medellin, Colombia. ; Smithsonian Tropical Research Institute, Ciudad de Panama, Panama. ; Universidad de Caldas, Manizales, Colombia. ; University of Houston, Houston, TX 77004, USA. ; Washington State University, Pullman, WA 99164, USA. ; Corporacion Geologica Ares, Bogota, Colombia. ; Universidad de los Andes, Bogota, Colombia. ; Ecopetrol, Bogota, Colombia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859042" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...