ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-15
    Description: Erythropoiesis is a multi-step process in which the development of red blood cells occurs through expansion and differentiation of hematopoietic stem cells (HSCs) into more committed progenitors and finally into erythrocytes. Erythropoietin (Epo) is strictly required for erythropoiesis as it promotes survival and late maturation. In vivo and in vitro studies have pointed out the major role of erythropoietin receptor (EpoR) signalling through JAK2 tyrosine-kinase and STAT5a/b as a central regulator of erythropoiesis. STAT5a/b is essential in regulating early erythroblast survival, however, with regard to differentiation of erythroid progenitors current data are not definitive in establishing a critical, non-redundant role. Phospholipase C gamma 1 (PLCγ1) is known to act as key mediator of calcium-signalling that can substitute for PI3K/AKT in oncogenic models. Interestingly, genetic deletion of murine PLCγ1 in embryonic development using a conventional knockout mouse model resulted in lethality at E9.0 due to generalized growth failure and there was absence of erythrogenesis and vasculogenesis. Here, we revisited the role of Plcγ1 and investigated its function in signalling, differentiation and transcriptomic/epigenetic regulation of erythropoiesis: Upon Epo stimulation, we were able to demonstrate that Plcγ1 is a downstream target of EpoR/Jak2 signalling in lymphoid (Ba/F3) and myeloid (32D) progenitor cell lines (both transfected with EpoR and Jak2-WT) and in a erythroid progenitor (I/11) cell line. In order to specifically assess its role in erythroid development downstream of the EpoR-Jak2 axis, we focused on the murine pro-erythroblast cell line I/11 which is able to differentiate upon dexamethasone-/stem cell factor-withdrawal combined with erythropoietin stimulation. Interestingly, knockdown of Plcγ1 led to a dramatic delay (scr CD44high 21% vs. Plcγ1 shRNA CD44high 64%, p=0.02) in erythroid differentiation and accumulation of immature erythroid progenitors as assessed by flow cytometry technology. Knockdown of Plcγ1 did alter neither proliferation of cells nor the cell cycle distribution and activation of other EpoR downstream molecules as Stat5, Mek and Akt was not impaired. In addition, we analysed the colony-forming potential of Plcγ1-deficient I/11 and fetal liver cells (FLC) compared to controls. Colony formation was dramatically impaired in both - I/11 (scr 138 vs. Plcγ1 shRNA 32, p=0.03) and primary FLC (scr 107 vs. Plcγ1 shRNA 28, p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...