ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-01
    Description: A low-level turbulence (LLT) forecasting algorithm is proposed and implemented within the Graphical Turbulence Guidance (GTG) turbulence forecasting system. The LLT algorithm provides predictions of energy dissipation rate (EDR; turbulence dissipation to the one-third power), which is the standard turbulence metric used by the aviation community. The algorithm is based upon the use of distinct log-Weibull and lognormal probability distributions in a statistical remapping technique to represent accurately the behavior of turbulence in the atmospheric boundary layer for daytime and nighttime conditions, respectively, thus accounting for atmospheric stability. A 1-yr-long GTG LLT calibration was performed using the High-Resolution Rapid Refresh operational model, and optimum GTG ensembles of turbulence indices for clear-air and mountain-wave turbulence that minimize the mean absolute percentage error (MAPE) were determined. Evaluation of the proposed algorithm with in situ EDR data from the Boulder Atmospheric Observatory tower covering a range of altitudes up to 300 m above the surface demonstrates a reduction in the error by a factor of approximately 2.0 (MAPE = 55%) relative to the current operational GTG system (version 3). In addition, the probability of detection of typical small and large EDR values at low levels is increased by approximately 15%–20%. The improved LLT algorithm is expected to benefit several nonconventional turbulence-prediction sectors such as unmanned aerial systems and wind energy.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...