ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-28
    Description: The functionalization of N-(benzo[d]thiazol-2-yl)benzamide with a nitro (NO2) substituent influences the solid-state arrangement, absorption and fluorescence properties of these compounds. Each of these compounds crystallised in a different crystal system or space group, namely a monoclinic crystal system with P21/n and C2/c space groups for o-NO2 and m-NO2 derivatives, respectively, and an orthorhombic crystal system (Pbcn space group) for p-NO2 derivative. The o-NO2 substituent with intrinsic steric hindrance engendered a distorted geometry. Conversely, the m-NO2 derivate displayed the most planar geometry among the analogues. The solid-state architectures of these compounds were dominated by the N−H···N and C−H···O intermolecular hydrogen bonds and were further stabilised by other weak interactions. The dimer synthons of the compounds were established via a pair of N−H···N hydrogen bonds. These findings were corroborated by a Hirshfeld surface analysis and two-dimensional (2D) fingerprint plot. The interaction energies within the crystal packing were calculated (CE-B3LYP/6-31G(d,p)) and the energy frameworks were modelled by CrystalExplorer17.5. The highly distorted o-NO2 congener synthon relied mainly on the dispersion forces, which included π–π interactions compared to the electrostatic attractions found in m-NO2. Besides, the latter possesses an elevated asphericity character, portraying a marked directionality in the crystal array. The electrostatic and dispersion forces were regarded as the dominant factors in stabilising the crystal packing.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...