ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-23
    Description: The quantitatively minor phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P(2)] fulfills many cellular functions in the plasma membrane (PM), whereas its synthetic precursor, phosphatidylinositol 4-phosphate (PI4P), has no assigned PM roles apart from PI(4,5)P(2) synthesis. We used a combination of pharmacological and chemical genetic approaches to probe the function of PM PI4P, most of which was not required for the synthesis or functions of PI(4,5)P(2). However, depletion of both lipids was required to prevent PM targeting of proteins that interact with acidic lipids or activation of the transient receptor potential vanilloid 1 cation channel. Therefore, PI4P contributes to the pool of polyanionic lipids that define plasma membrane identity and to some functions previously attributed specifically to PI(4,5)P(2), which may be fulfilled by a more general polyanionic lipid requirement.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646512/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646512/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammond, Gerald R V -- Fischer, Michael J -- Anderson, Karen E -- Holdich, Jon -- Koteci, Ardita -- Balla, Tamas -- Irvine, Robin F -- ZIA HD000196-12/Intramural NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Aug 10;337(6095):727-30. doi: 10.1126/science.1222483. Epub 2012 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK. gerald.hammond@nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Cell Membrane/*metabolism ; Cercopithecus aethiops ; Endocytosis ; HEK293 Cells ; Humans ; Membrane Proteins/metabolism ; Peptide Fragments/metabolism ; Phosphatidylinositol 4,5-Diphosphate/antagonists & ; inhibitors/biosynthesis/*metabolism ; Phosphatidylinositol Phosphates/*metabolism ; Phosphoric Monoester Hydrolases/genetics/metabolism ; Polymers ; Receptor, Muscarinic M1/metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Signal Transduction ; Static Electricity ; TRPV Cation Channels/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...