ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-06-04
    Description: Plants can defend themselves against a wide array of enemies, from microbes to large animals, yet there is great variability in the effectiveness of such defences, both within and between species. Some of this variation can be explained by conflicting pressures from pathogens with different modes of attack. A second explanation comes from an evolutionary 'tug of war', in which pathogens adapt to evade detection, until the plant has evolved new recognition capabilities for pathogen invasion. If selection is, however, sufficiently strong, susceptible hosts should remain rare. That this is not the case is best explained by costs incurred from constitutive defences in a pest-free environment. Using a combination of forward genetics and genome-wide association analyses, we demonstrate that allelic diversity at a single locus, ACCELERATED CELL DEATH 6 (ACD6), underpins marked pleiotropic differences in both vegetative growth and resistance to microbial infection and herbivory among natural Arabidopsis thaliana strains. A hyperactive ACD6 allele, compared to the reference allele, strongly enhances resistance to a broad range of pathogens from different phyla, but at the same time slows the production of new leaves and greatly reduces the biomass of mature leaves. This allele segregates at intermediate frequency both throughout the worldwide range of A. thaliana and within local populations, consistent with this allele providing substantial fitness benefits despite its marked impact on growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055268/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055268/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todesco, Marco -- Balasubramanian, Sureshkumar -- Hu, Tina T -- Traw, M Brian -- Horton, Matthew -- Epple, Petra -- Kuhns, Christine -- Sureshkumar, Sridevi -- Schwartz, Christopher -- Lanz, Christa -- Laitinen, Roosa A E -- Huang, Yu -- Chory, Joanne -- Lipka, Volker -- Borevitz, Justin O -- Dangl, Jeffery L -- Bergelson, Joy -- Nordborg, Magnus -- Weigel, Detlef -- F23-GM65032-1/GM/NIGMS NIH HHS/ -- GM057171/GM/NIGMS NIH HHS/ -- GM057994/GM/NIGMS NIH HHS/ -- GM073822/GM/NIGMS NIH HHS/ -- GM62932/GM/NIGMS NIH HHS/ -- R01 GM062932/GM/NIGMS NIH HHS/ -- R01 GM062932-08/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jun 3;465(7298):632-6. doi: 10.1038/nature09083.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520716" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Ankyrins/genetics/metabolism ; Arabidopsis/*genetics/growth & development/metabolism/microbiology ; Arabidopsis Proteins/genetics/metabolism ; Biomass ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Fitness/*genetics ; Genetic Variation/*genetics ; Genome-Wide Association Study ; Molecular Sequence Data ; Phenotype ; Plant Diseases/genetics/microbiology ; Plant Leaves/anatomy & histology/genetics/growth & development/parasitology ; Quantitative Trait Loci
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...