ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-08-25
    Description: The ability of cells to sense and respond to mechanical force underlies diverse processes such as touch and hearing in animals, gravitropism in plants, and bacterial osmoregulation. In bacteria, mechanosensation is mediated by the mechanosensitive channels of large (MscL), small (MscS), potassium-dependent (MscK) and mini (MscM) conductances. These channels act as 'emergency relief valves' protecting bacteria from lysis upon acute osmotic down-shock. Among them, MscL has been intensively studied since the original identification and characterization 15 years ago. MscL is reversibly and directly gated by changes in membrane tension. In the open state, MscL forms a non-selective 3 nS conductance channel which gates at tensions close to the lytic limit of the bacterial membrane. An earlier crystal structure at 3.5 A resolution of a pentameric MscL from Mycobacterium tuberculosis represents a closed-state or non-conducting conformation. MscL has a complex gating behaviour; it exhibits several intermediates between the closed and open states, including one putative non-conductive expanded state and at least three sub-conducting states. Although our understanding of the closed and open states of MscL has been increasing, little is known about the structures of the intermediate states despite their importance in elucidating the complete gating process of MscL. Here we present the crystal structure of a carboxy-terminal truncation mutant (Delta95-120) of MscL from Staphylococcus aureus (SaMscL(CDelta26)) at 3.8 A resolution. Notably, SaMscL(CDelta26) forms a tetrameric channel with both transmembrane helices tilted away from the membrane normal at angles close to that inferred for the open state, probably corresponding to a non-conductive but partially expanded intermediate state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737600/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737600/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Zhenfeng -- Gandhi, Chris S -- Rees, Douglas C -- GM084211/GM/NIGMS NIH HHS/ -- R01 GM084211/GM/NIGMS NIH HHS/ -- R01 GM084211-01/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Sep 3;461(7260):120-4. doi: 10.1038/nature08277. Epub 2009 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19701184" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Ion Channel Gating ; Ion Channels/*chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mycobacterium tuberculosis/chemistry/metabolism ; Pressure ; Protein Structure, Quaternary ; Staphylococcus aureus/*chemistry ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...