ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-04-04
    Description: Efficient phagocytosis of apoptotic cells is crucial for tissue homeostasis and the immune response. Rab5 is known as a key regulator of the early endocytic pathway and we have recently shown that Rab5 is also implicated in apoptotic cell engulfment; however, the precise spatio-temporal dynamics of Rab5 activity remain unknown. Here, using a newly developed fluorescence resonance energy transfer biosensor, we describe a change in Rab5 activity during the engulfment of apoptotic thymocytes. Rab5 activity on phagosome membranes began to increase on disassembly of the actin coat encapsulating phagosomes. Rab5 activation was either continuous or repetitive for up to 10 min, but it ended before the collapse of engulfed apoptotic cells. Expression of a dominant-negative mutant of Rab5 delayed this collapse of apoptotic thymocytes, showing a role for Rab5 in phagosome maturation. Disruption of microtubules with nocodazole inhibited Rab5 activation on the phagosome membrane without perturbing the engulfment of apoptotic cells. Furthermore, we found that Gapex-5 is the guanine nucleotide exchange factor essential for Rab5 activation during the engulfment of apoptotic cells. Gapex-5 was bound to a microtubule-tip-associating protein, EB1, whose depletion inhibited Rab5 activation during phagocytosis. We therefore propose a mechanistic model in which the recruitment of Gapex-5 to phagosomes through the microtubule network induces the transient Rab5 activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kitano, Masahiro -- Nakaya, Michio -- Nakamura, Takeshi -- Nagata, Shigekazu -- Matsuda, Michiyuki -- England -- Nature. 2008 May 8;453(7192):241-5. doi: 10.1038/nature06857. Epub 2008 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18385674" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Apoptosis ; Cells, Cultured ; Fluorescence Resonance Energy Transfer ; Genes, Dominant ; Guanine Nucleotide Exchange Factors/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Microtubule-Associated Proteins/metabolism ; Microtubules/drug effects ; Nocodazole/pharmacology ; Phagocytosis/drug effects ; Phagosomes/drug effects/*metabolism ; Swiss 3T3 Cells ; Thymus Gland/cytology/drug effects/metabolism ; rab5 GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...