ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-05
    Description: The efficient use of combined heat and power (CHP) systems in buildings presents a control challenge due to their simultaneous production of thermal and electrical energy. The use of thermal energy storage coupled with a CHP engine provides an interesting solution to the problem—the electrical demands of the building can be matched by the CHP engine, while the resulting thermal energy can be regulated by the thermal energy store. Based on the thermal energy demands of the building the thermal store can provide extra thermal energy or absorb surplus thermal energy production. This paper presents a multi-input multi-output inverse-dynamics-based control strategy that will minimise the electrical grid utilisation of a building, while simultaneously maintaining a defined operative temperature. Electrical demands from lighting and appliances within the building are considered. In order to assess the performance of the control strategy, a European Standard validated simplified dynamic building physics model is presented that provides verified heating demands. Internal heat gains from solar radiation and internal loads are included within the model. Results indicate the control strategy is effective in minimising the electrical grid use and maximising the utilisation of the available energy when compared with conventional heating systems.
    Keywords: Other low-carbon energy technologies
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...