ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-11
    Description: Purpose The purpose of this study was to analyze the environmental trade-offs of cascading reuse of electric vehicle (EV) lithium-ion batteries (LIBs) in stationary energy storage at automotive end-of-life. Methods Two systems were jointly analyzed to address the consideration of stakeholder groups corresponding to both first (EV) and second life (stationary energy storage) battery applications. The environmental feasibility criterion was defined by an equivalent-functionality lead-acid (PbA) battery. A critical methodological challenge addressed was the allocation of environmental impacts associated with producing LIBs across the EV and stationary use systems. The model also tested sensitivity to parameters such as the fraction of battery cells viable for reuse, service life of refurbished cells, and PbA battery efficiency. Results and discussion From the perspective of EV applications, cascading reuse of an LIB in stationary energy storage can reduce net cumulative energy demand and global warming potential by 15 % under conservative estimates and by as much as 70 % in ideal refurbishment and reuse conditions. When post-EV LIB cells were compared directly to a new PbA system for stationary energy storage, the reused cells generally had lower environmental impacts, except in scenarios where very few of the initial battery cells and modules could be reused and where reliability was low (e.g., life span of 1 year or less) in the secondary application. Conclusions These findings demonstrate that EV LIB reuse in stationary application has the potential for dual benefit—both from the perspective of offsetting initial manufacturing impacts by extending battery life span as well as avoiding production and use of a less-efficient PbA system. It is concluded that reuse decisions and diversion of EV LIBs toward suitable stationary applications can be based on life cycle centric studies. However, technical feasibility of these systems must still be evaluated, particularly with respect to the ability to rapidly analyze the reliability of EV LIB cells, modules, or packs for refurbishment and reuse in secondary applications.
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...