ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-07
    Description: In recent years, an increasing number of reports have been focused on the structure and biological role of non-canonical nucleic acid secondary structures. Many of these studies involve the use of oligonucleotides that can often adopt a variety of structures depending on the experimental conditions, and hence change the outcome of an assay. The knowledge of the structure(s) formed by oligonucleotides is thus critical to correctly interpret the results, and gain insight into the biological role of these particular sequences. Herein we demonstrate that size-exclusion HPLC (SE-HPLC) is a simple yet surprisingly powerful tool to quickly and effortlessly assess the secondary structure(s) formed by oligonucleotides. For the first time, an extensive calibration and validation of the use of SE-HPLC to confidently detect the presence of different species displaying various structure and/or molecularity, involving 〉110 oligonucleotides forming a variety of secondary structures (antiparallel, parallel, A-tract bent and mismatched duplexes, triplexes, G-quadruplexes and i-motifs, RNA stem loops), is performed. Moreover, we introduce simple metrics that allow the use of SE-HPLC without the need for a tedious calibration work. We show that the remarkable versatility of the method allows to quickly establish the influence of a number of experimental parameters on nucleic acid structuration and to operate on a wide range of oligonucleotide concentrations. Case studies are provided to clearly illustrate the all-terrain capabilities of SE-HPLC for oligonucleotide secondary structure analysis. Finally, this manuscript features a number of important observations contributing to a better understanding of nucleic acid structural polymorphism.
    Keywords: Phsyical and Biochemical Characterisation of DNA
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...