ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-19
    Description: In this work, novel Y 2 Si 2 O 7 / ZrO 2 composites were developed for structural and coating applications by taking advantage of their unique properties, such as good damage tolerance, tunable mechanical properties, and superior wear resistance. The γ- Y 2 Si 2 O 7 / ZrO 2 composites showed improved mechanical properties compared to the γ- Y 2 Si 2 O 7 matrix material, that is, the Young's modulus was enhanced from 155 to 188 GPa (121%) and the flexural strength from 135 to 254 MPa (181%); when the amount of ZrO 2 was increased from 0 to 50 vol%, the γ- Y 2 Si 2 O 7 / ZrO 2 composites also presented relatively high facture toughness (〉1.7 MPa·m 1/2 ), but this exhibited an inverse relationship with the ZrO 2 content. The composition–mechanical property–tribology relationships of the Y 2 Si 2 O 7 / ZrO 2 composites were elucidated. The wear resistance of the composites is not only influenced by the applied load, hardness, strength, toughness, and rigidity but also effectively depends on micromechanical stability properties of the microstructures. The easy growth of subcritical microcracks in Y 2 Si 2 O 7 grains and at grain boundaries significantly contributes to the macroscopic fracture toughness, but promotes the pull-out of individual grains, thus resulting in a lack of correlation between the wear rate and the macroscopic fracture toughness of the composites.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...