ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2013-09-07
    Description: This paper presents ultra-thin silicon chips (flex–chips) on flexible foils, realized through post-processing steps such as wafer thinning, dicing, and transferring the thinned chips to flexible polyimide foils. The cost effective chemical etching is adopted for wafer thinning and the transfer printing approach, to transfer quasi 1-D structures such as micro/nanoscale wires and ribbons, that is adapted for transferring large ultra-thin flex–chips (widths 4.5–15 mm, lengths 8–36 mm, and thickness ${approx}{rm 15}~mu{rm m}$ ). The post-processing capability is demonstrated with passive structures such as metal interconnects realized on the flex–chips before carrying out the chip thinning step. The resistance values of metal interconnects do not show any appreciable change because of bending of chips for the tested range viz., radius of curvature 9 mm and above. Further, the bending mechanics of silicon membranes on foil is investigated to evaluate the bending limits before a mechanical fracture/failure occurs. The distinct advantages of this paper are: attaining bendability through post-processing of chips, cost effective fabrication process, and easy transfer of chips to the flexible substrates without using conventional and sophisticated equipment such as pick and place set up.
    Print ISSN: 1530-437X
    Electronic ISSN: 1558-1748
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...