ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: The Internet of Things (IoT) will feature pervasive sensing and control capabilities via the massive deployment of machine-type communication devices in order to greatly improve daily life. However, machine-type communications can be illegally used (e.g., by criminals or terrorists) which is difficult to monitor, and thus presents new security challenges. The information exchanged in machine-type communications is usually transmitted in short packets. Thus, this paper investigates a legitimate surveillance system via proactive eavesdropping at finite blocklength regime. Under the finite blocklength regime, we analyze the channel coding rate of the eavesdropping link and the suspicious link. We find that the legitimate monitor can still eavesdrop the information sent by the suspicious transmitter as the blocklength decreases, even when the eavesdropping is failed under the Shannon capacity regime. Moreover, we define a metric called the effective eavesdropping rate and study the monotonicity. From the analysis of monotonicity, the existence of a maximum effective eavesdropping rate for a moderate or even high signal-to-noise (SNR) is verified. Finally, numerical results are provided and discussed. In the simulation, we also find that the maximum effective eavesdropping rate slowly increases with the blocklength.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...